Answer:
Solve for ‘y' means, solve the equation to get the value of y.
And in terms of x , means, value of y not necessarily in pure constant form, but in the form of x.
Step-by-step explanation: Here's an example
3y +x = 7
=> y = (7-x)/3
As you see in the picture, there are two lines that could maybe represent two linear functions. However, this is not true because of the solid point and the hollow point. This is an inequality equation that has points of discontinuity.
Points of discontinuity are breaks in the graph that are a result of an undefined point when the f(x) is substituted with a point of x that is not part of the solution. So, technically, the graph is made from one rational expression.
So, when it says f(-2), this is the y-value at x=-2. That means f(-2)=2, f(0)=3 and f(4)=-1. Specifically, there are two points at x=0, but we take the solid point only.

- Given - <u>A </u><u>trapezium</u><u> </u><u>ABCD </u><u>with </u><u>non </u><u>parallel </u><u>sides </u><u>of </u><u>measure </u><u>1</u><u>5</u><u> </u><u>cm </u><u>each </u><u>!</u><u> </u><u>along </u><u>,</u><u> </u><u>the </u><u>parallel </u><u>sides </u><u>are </u><u>of </u><u>measure </u><u>1</u><u>3</u><u> </u><u>cm </u><u>and </u><u>2</u><u>5</u><u> </u><u>cm</u>
- To find - <u>Area </u><u>of </u><u>trapezium</u>
Refer the figure attached ~
In the given figure ,
AB = 25 cm
BC = AD = 15 cm
CD = 13 cm
<u>Construction</u><u> </u><u>-</u>

Now , we can clearly see that AECD is a parallelogram !
AE = CD = 13 cm
Now ,

Now , In ∆ BCE ,

Now , by Heron's formula

Also ,

<u>Since </u><u>we've </u><u>obtained </u><u>the </u><u>height </u><u>now </u><u>,</u><u> </u><u>we </u><u>can </u><u>easily </u><u>find </u><u>out </u><u>the </u><u>area </u><u>of </u><u>trapezium </u><u>!</u>

hope helpful :D
Answer:
2np + p²
Step-by-step explanation:
The general formula for the area of a square is A = s², where s = the length of one side of the square. In the case of the smaller square the area would be: n x n = n². Since the side of the larger square is 'p' inches longer, the length of one side is 'n + p'. To find the area of the larger square, we have to take the length x length or (n +p)².
Using FOIL (forward, outside, inside, last):
(n + p)(n+p) = n² + 2np + p²
Since the area of the first triangle is n², we can subtract this amount from the area of the larger square to find out how many square inches greater the larger square area is.
n² + 2np + p² - n² = 2np + p²