Thats allllllll otttt but ill help
step by step
Answer:
Mass of water produced is 22.86 g.
Explanation:
Given data:
Mass of hydrogen = 2.56 g
Mass of oxygen = 20.32 g
Mass of water = ?
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of oxygen:
Number of moles = mass/ molar mass
Number of moles = 20.32 g/ 32 g/mol
Number of moles = 0.635 mol
Number of moles of hydrogen:
Number of moles = mass/ molar mass
Number of moles = 2.56 g/ 2 g/mol
Number of moles = 1.28 mol
Now we will compare the moles of water with oxygen and hydrogen.
O₂ : H₂O
1 : 2
0.635 ; 2×0.635 = 1.27
H₂ : H₂O
2 : 2
1.28 : 1.28
The number of moles of water produced by oxygen are less thus it will be limiting reactant.
Mass of water produced:
Mass = number of moles × molar mass
Mass = 1.27 × 18 g/mol
Mass = 22.86 g
Answer:
E. Water Freezing
Explanation:
Entropy refers to the degree of disorderliness of a system.
A. Water Evaporating: There is an increase in entropy, this is because the phase change is from liquid to gas. Gas particles are more disordered than liquid.
B. Dry Ice sublimating: Sublimating refers to a phase change from solid to gas. This is an increase in entropy, this is because the gas particles are more disordered than solid particles
C. Water Boiling: The phase change is from liquid to gaseous state. There is an increase in entropy. Gas particles are more disordered than liquid.
D. Ice melting: The phase change is from solid to liquid state. There is an increase in entropy. Liquid particles are more disordered than that of solid.
E. Water Freezing: The phase change is from liquid to solid state. There is a decrease in entropy. solid particles are less disordered than those of liquid.
The Inclosure Acts, which use an old or formal spelling of the word now usually spelt "enclosure", cover enclosure of open fields and common land in England and Wales, creating legal property rights to land previously held in common.