An oxide of nitrogen contains 30.45 mass % N, if the molar mass is 90± 5 g/mol the molecular formula is N₂O₄.
<h3>What is molar mass?</h3>
The molar mass of a chemical compound is determined by dividing its mass by the quantity of that compound, expressed as the number of moles in the sample, measured in moles. A substance's molar mass is one of its properties. The compound's molar mass is an average over numerous samples, which frequently have different masses because of isotopes.
<h3>How to find the molecular formula?</h3>
The whole-number multiple is defined as follows.
Whole-number multiple = 
The empirical formula mass is shown below.
Mw of empirical formula = Mw of N+ 2 x (Mw of O)
= 14.01 g/mol + 2 x (16.00 g/mol)
= 46.01 g/mol
With the given molar mass or the molecular formula mass, we can get the whole-number multiple for the compound.
Whole-number multiple =
≈ 2
Multiplying the subscripts of NO2 by 2, the molecular formula is N(1x2)O(2x2)= N2O4.
To learn more about molar mass visit:
brainly.com/question/12127540
#SPJ4
Yes, because it comes from a one thing and spreads throughout the entire space. Similar to dripping foot coloring into a glass of water, or spraying air freshener.
Answer:
Electrons
Explanation:
Cathode rays carry electronic currents through the tube. Electrons were first discovered as the constituents of cathode rays. J.J. Thomson used the cathode ray tube to determine that atoms had small negatively charged particles inside of them, which he called “electrons.”
Hyperventilation<span> will blow off carbon dioxide which reduces the alkaline component of the </span>blood<span>, resulting in acidosis and a lower </span>blood pH<span>. (See Andromeda Strain). This is why re-breathing into a bag to increase carbon dioxide in your </span>blood will make you feel less faint. Basically <span>It increases the pH ... you can look at CO2 as an acid ... and when reduced ... alkalinization of the pH occurs</span>
Answer:
Salt has long been used for flavoring and for preserving food. It has also been used in tanning, dyeing and bleaching, and the production of pottery, soap, and chlorine. Today, it is widely used in the chemical industry.