I think the correct answer would be the third option. The reason I2 has a higher melting point than F2 is because I2 possesses a more polarizable electron cloud. I2 contains more electrons than F2 which would result to a stronger intermolecular forces. Having stronger intermoleculer forces would mean more energy is needed to break the bonds so a higher melting point would be observed.
Answer:
Q = 1267720 J
Explanation:
∴ QH2O = mCpΔT
∴ m H2O = 500 g
∴ Cp H2O = 4.186 J/g°C = 4.183 E-3 KJ/g°C
∴ ΔT = 120 - 50 = 70°C
⇒ QH2O = (500 g)(4.183 E-3 KJ/g°C)(70°C) = 146.51 KJ
∴ ΔHv H2O = 40.7 KJ/mol
moles H2O:
∴ mm H2O = 18.015 g/mol
⇒ moles H2O = (500 g)(mol/18.015 g) = 27.548 mol H2O
⇒ ΔHv H2O = (40.7 KJ/mol)(27.548 mol) = 1121.21 KJ
⇒ Qt = 146.51 KJ + 1121.21 KJ = 1267.72 KJ = 1267720 J
Answer:
it's to blurry you can't see anything
Answer:
[Cl-18]⁻ & [Cl-20]⁻
Explanation:
By definition isotopes are elements with the same number of protons by different number of neutrons. Elements X-18 & X-20 have 17 protons and represent Chlorine isotopes Cl-18 & Cl-20 each with 17 protons and 18 electrons to give the isotopes a -1 oxidation state. Both isotope of chlorine have 7 electron in its valence shell and 10 electrons in its core structure. Gaining 1 electron fills the valence octet and establishes a -1 oxidation state.