A. High energy radiation produced in the ozone layer. (:
The balanced chemical reaction is:
<span>2Na + 2H2O → 2NaOH + H2
</span><span>
We first use the amount of hydrogen gas to be produced and the molar mass of the hydrogen gas to determine the amount in moles to be produced. Then, we use the relation from the reaction to relate H2 to Na.
53.2 g H2 ( 1 mol / 2.02 g ) ( 2 mol Na / 1 mol H2 ) ( 22.99 g / 1 mol ) = 1210.96 g Na
1210.96 g Na ( 1 mL / 0.97 g ) = 1248.41 mL Na needed</span>
Answer:
Explanation:
Hello there!
Unfortunately, the question is not given in the question; however, it is possible for us to compute the equilibrium constant as the problem is providing the concentrations at equilibrium. Thus, we first set up the equilibrium expression as products/reactants:
Then, we plug in the concentrations at equilibrium to obtain the equilibrium constant as follows:
In addition, we can infer this is a reaction that predominantly tends to the product (NO2) as K>>>>1.
Best regards!