Answer:
16.6 mg
Explanation:
Step 1: Calculate the rate constant (k) for Iodine-131 decay
We know the half-life is t1/2 = 8.04 day. We can calculate the rate constant using the following expression.
k = ln2 / t1/2 = ln2 / 8.04 day = 0.0862 day⁻¹
Step 2: Calculate the mass of iodine after 8.52 days
Iodine-131 decays following first-order kinetics. Given the initial mass (I₀ = 34.7 mg) and the time elapsed (t = 8.52 day), we can calculate the mass of iodine-131 using the following expression.
ln I = ln I₀ - k × t
ln I = ln 34.7 - 0.0862 day⁻¹ × 8.52 day
I = 16.6 mg
Answer:

Explanation:
Hello!
In this case, according to the given data of volume, pressure and temperature, it is possible to infer this problem can be solved via the combined gas law:

Thus, regarding the question, we evidence we need V2, but first we make sure the temperatures are in Kelvins:

Then, we obtain:

Best regards!
N₂ + 3H₂ ⇒ 2NH₃
doesnt matterN₂ + 6.64H₂ ⇒ 2NH₃
(6.64H₂/3H₂) x (2NH₃) =4.4266667
rounded to sig figs= 4.43
After a good long amount of research, I found that the scientific answer to this question would be a big ol’ dink
Answer:
Final temperature = 
Explanation:
Given that,
Heat added, Q = 250 J
Mass, m = 30 g
Initial temperature, T₁ = 22°C
The Specific heat of Cu= 0.387 J/g °C
We know that, heat added due to the change in temperature is given by :

Put all the values,

So, the final temperature is equal to
.