Energy(heat) required to raise the temperature of water : 418.6 J
<h3>Further explanation </h3>
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
Specific heat of water = 4.186 J/g*C.
∆T(raise the temperature) : 10° C
mass = 10 g
Heat required :

Answer:
Inert gases
Explanation:
Inert elements have a stable electron configuration meaning their shells/orbitals are full with their requisite number of electrons. Therefore, gaining or losing an electron would take high ionization energy. Therefore they are less likely to be involved in chemical reaction unless a high amount of energy is used. An example of an inert gas is Helium.
I think the answer the students average is 15 km?
A molecule of hydrogen is formed by two hydrogen atoms, that is a fact.
How does it work? When two atoms, known as "diatomic" pair with another in a bond known non-polar covalent bonds. Where they equally share electrons. A Hydrogen atoms needs 1 more electrons to fill its first shell fully and have a full valence shell. So if two H's share their electrons, they'll both have a full V-Shell!
That's the basics of both the H-H bond and all the other diatomic bonds as well.
2.
The reason why is because there are 2 available electron spots on the orbital for the oxygen atom. Hydrogen atoms have one proton and one electron, thus, in order to fill the oxygen atom orbital to a full outer shell, a maximum of 2 atoms could bond with the oxygen atoms.
6 electrons (oxygen)+ 1 electron (hydrogen)+ 1 electron (hydrogen)= 8