The average speed is determined by the following formula:
average speed = [sum of (speed * time for which that speed was traveled)] / total time
average speed = [(83 * 26 + 41 * 52 + 60 * 45 + 0 * 15) / 60] / [(26 + 52 + 45 + 15) / 60]
*note: The division by 60 is to convert minutes to hours. We see that the 60 cancels from the top and bottom of the division
average speed = 50.65 km/hr
The total distance traveled is equivalent to the numerator of the fraction we used in the first part. This is:
Distance = (83 * 26 + 41 * 52 + 60 * 45 + 0 * 15) / 60
Distance = 116.5 kilometers
Separate the barriers so they have a 2cm gap between them.
Answer:
150 inches (12.5 ft)
Explanation:
The work done to lift the 500 pound block 3 inches should be the same as that to lift the 10 pond object a given distance.
The following is the equation one needs to solve:

therefore solving for the distance "x" gives as the answer (in inches):

which can also be given in feet as: 12.5 ft
Answer:
distance is 13 m for 100 dB
distance is 409 km for 10 dB
Explanation:
Given data
distance r = 2.30 m
source β = 115 dB
to find out
distance at sound level 100 dB and 10 dB
solution
first we calculate here power and intensity and with this power and intensity we will find distance
we know sound level β = 10 log(I/
) ......................a
put here value (I/
) = 10^−12 W/m² and β = 115
115 = 10 log(I/10^−12)
so
I = 0.316228 W/m²
and we know power = intensity × 4π r² ...............b
power = 0.316228 × 4π (2.30)²
power = 21.021604 W
we know at 100 dB intensity is 0.01 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 0.01 × 4π r²
so by solving r
r = 12.933855 m = 13 m
distance is 13 m
and
at 10 dB intensity is 1 × 10^–11 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 1 × 10^–11 × 4π r²
by solving r we get
r = 409004.412465 m = 409 km
Answer:
Explanation:
Given
mass of spring 
extension in spring 
downward velocity 
Position in undamped free vibration is given by

where 
also 



it is given


substituting values we get






