C3H8.gas reacts with 5L of O2 at STP
Answer:
C = (5/9) F - (160/9)
They both read equal at Z = - 40
Explanation:
We are looking for a linear function so we can write the following condition
Y = aX + b
Applying it to the exercise we got C = a F + b
Let's use the facts that C = 0 when F = 32 and C = 100 when F = 212
0 = 32 a + b (1)
100 = 212 a + b (2)
From (1) b = - 32 a , when we replace this in (2) we obtain a = (5/9)
and b = - (5/9)32 = - 160/9
Finally the linear function is C = (5/9) F - (160/9)
Both readings are equal at a Z number so
Z = (5/9) Z - 160/9
(4/9) Z = -160/9 and Z = - 40
Use the concentration to obtain the moles. I am assuming you mean to write capital M. because little m means molality.
So, first convert the ml into Liters and then into moles, then moles to grams using the molar mass (just adding the values of each atom from the periodic table. )
Molar mass= 12 (12.0) + 22 (1.01)+ 11 (16.0)= 342 grams/mole
300 ml (1 liter/ 1000 mL) x (0.50 moles/ 1 Liter) x (342 grams/ 1 mole)= 51.3 grams
Answer:
b. 1.5 atm.
Explanation:
Hello!
In this case, since the undergoing chemical reaction suggests that two moles of A react with one moles of B to produce two moles of C, for the final pressure we can write:

Now, if we introduce the stoichiometry, and the change in the pressure
we can write:

Nevertheless, since the reaction goes to completion, all A is consumed and there is a leftover of B, and that consumed A is:

Thus, the final pressure is:

Therefore the answer is b. 1.5 atm.
Best regards!
Answer:
Explanation:
Initial burette reading = 1.81 mL
final burette reading = 39.7 mL
volume of NaOH used = 39.7 - 1.81 = 37.89 mL .
37.89 mL of .1029 M NaOH is used to neutralise triprotic acid
No of moles contained by 37.89 mL of .1029 M NaOH
= .03789 x .1029 moles
= 3.89 x 10⁻³ moles
Since acid is triprotic , its equivalent weight = molecular weight / 3
No of moles of triprotic acid = 3.89 x 10⁻³ / 3
= 1.30 x 10⁻³ moles .