I assume that the ball is stationary (v=0) at point B, so its total energy is just potential energy, and it is equal to 7.35 J.
At point A, all this energy has converted into kinetic energy, which is:

And since K=7.35 J, we can find the velocity, v:
Answer:
a=2.378 m/s^2
Explanation:
a=Δv/Δt------eq(1)
Δv=Vf-Vi=120 km/h-0 km/h=120 km/h
or Δv=33.3 m/sec
or time=t=14s
putting values in eq(1)
a=33.3/14
a=2.378 m/s^2
Answer:
1.41 m/s^2
Explanation:
First of all, let's convert the two speeds from km/h to m/s:


Now we find the centripetal acceleration which is given by

where
v = 12.8 m/s is the speed
r = 140 m is the radius of the curve
Substituting values, we find

we also have a tangential acceleration, which is given by

where
t = 17.0 s
Substituting values,

The two components of the acceleration are perpendicular to each other, so we can find the resultant acceleration by using Pythagorean theorem:

what are the answer choices?