First one:
you can add -10m and -13m but you can't add -10m and 2m^4 becuase the powers aren't the same so
when adding the like terms
look at the:
powers, (x^3 adds with x^3)
placehloder letter (x adds with x and y adds with y and so on)
-10m+2m^4-13m-20m^4
powers: m^1 and M^4
placeholders: all m
add
-10m-13m+2m^4-20m^4
-23m-18m^4
second one:
when multiplying exponents, you add with like
so if you multipliy
x^2yz^3 times x^4y^2z^2 thne you would get x^6y^3z^5
when multiply with coeficients
2x^2yz^3 times 4x^4y^2z^2=8x^6y^3z^5
so using associative property a(bc)=(ab)c
2/3 times p^4 times y^3 times y^4 times s^5 times 6 times p^2 times s^3
group like terms
(2/3 times 6) times (p^4 times p^2) times (y^3 times y^4) times (s^5 times s^3)
(4) times (p^6) times (y^7) times (s^8)
4p^6y^7s^8
Put the numbers in order.
1, 2, 5, 6, 7, 9, 12, 15, 18, 19, 27.
Step 2: Find the median.
1, 2, 5, 6, 7, 9, 12, 15, 18, 19, 27.
Step 3: Place parentheses around the numbers above and below the median.
Not necessary statistically, but it makes Q1 and Q3 easier to spot.
(1, 2, 5, 6, 7), 9, (12, 15, 18, 19, 27).
Step 4: Find Q1 and Q3
Think of Q1 as a median in the lower half of the data and think of Q3 as a median for the upper half of data.
(1, 2, 5, 6, 7), 9, ( 12, 15, 18, 19, 27). Q1 = 5 and Q3 = 18.
Step 5: Subtract Q1 from Q3 to find the interquartile range.
18 – 5 = 13.
hey girl hey, im sorry you have no answers so far. im looking for some answers too!!!
Answer:
The surface area of the gift box is = 
Step-by-step explanation:
The surface area of the cylinder can be calculated using this formula:

in this case, r is not a number, but rather an expression, which is r =
.
The height of the gift box is twice the radius, which is h = 
To get our curved surface area, we carefully put the expressions for h and r into the equation.




The surface area of the gift box is = 