Answer:

Step-by-step explanation:
<u>Ratios
</u>
We are given the following relations:
![a=\sqrt{7}+\sqrt{c}\qquad \qquad[1]](https://tex.z-dn.net/?f=a%3D%5Csqrt%7B7%7D%2B%5Csqrt%7Bc%7D%5Cqquad%20%5Cqquad%5B1%5D)
![b=\sqrt{63}+\sqrt{d}\qquad \qquad[2]](https://tex.z-dn.net/?f=b%3D%5Csqrt%7B63%7D%2B%5Csqrt%7Bd%7D%5Cqquad%20%5Cqquad%5B2%5D)
![\displaystyle \frac{c}{d}=\frac{1}{9} \qquad \qquad [3]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bc%7D%7Bd%7D%3D%5Cfrac%7B1%7D%7B9%7D%20%5Cqquad%20%5Cqquad%20%5B3%5D)
From [3]:

Replacing into [2]:

We can express 63=9*7:

Taking the square root of 9:

Factoring:

Find the ration a:b:

Simplifying:

Answer:
1 and 10
Step-by-step explanation:
Rent: $ 780
Food:$ 900
Medical:$ 450
Clothes:$ 300
Miscellaneous:$ 570
Solving the expressions
we get 
Step-by-step explanation:
We need to Solve the expression: 
Solving:


Applying exponent rule: 

Another exponent rule says: 

So, solving the expressions
we get 
Keywords: Solving Exponents
Learn more about Solving Exponents at:
#learnwithBrainly
1. Slope = -7
Y intercept= 8