Answer:
B. A collision scene
Explanation:
It could have been a parade ceremony, but, if you notice the vehicle's hazard lights or an emergency vehicle ahead, it is common sense to figure that they is a collision scene nearby.
Im sure the answer is letter B
To solve this problem we will apply the laws of Mersenne. Mersenne's laws are laws describing the frequency of oscillation of a stretched string or monochord, useful in musical tuning and musical instrument construction. This law tells us that the velocity in a string is directly proportional to the root of the applied tension, and inversely proportional to the root of the linear density, that is,

Here,
v = Velocity
= Linear density (Mass per unit length)
T = Tension
Rearranging to find the Period we have that


As we know that speed is equivalent to displacement in a unit of time, we will have to



Therefore the tension is 5.54N
Answer:
19.6m/s
Explanation:
A Rock falling off a cliff can be modeled as an object starting with zero velocity moves with constant acceleration for certain period of time, for such motion following equation of motion can be used.
here in our case
because object starts off from rest and
is acceleration because of gravity ( Motion under gravity).
and of course t = 2 second.
Now by substituting all this information in equation of motion we get.

that would be the velocity of rock as it would hit the ground.
Note! We have assumed that there is no air resistance.
A rock falling off a cliff can be modeled as an object starting with zero velocity moves with constant acceleration for a certain period of time, for such motion following equation of motion can be used.
here in our case because object starts off from rest and is acceleration because of gravity ( Motion under gravity).
and of course t = 2 seconds.
Now by substituting all this information in equation of motion we get.
V = 19.6m/s
that would be the velocity of rock as it would hit the ground.
Note! We have assumed that there is no air resistance.