Answer:
Explanation:
Let the bigger crate be in touch with the ground which is friction less. In the first case both m₁ and m₂ will move with common acceleration because m₁ is not sliding over m₂.
1 ) Common acceleration a = force / total mass
= 234 / ( 25 +91 )
= 2.017 m s⁻².
2 ) Force on m₁ accelerating it , which is nothing but friction force on it by m₂
= mass x acceleration
= 25 x 2.017
= 50.425 N
The same force will be applied by m₁ on m₂ as friction force which will act in opposite direction.
3 ) Maximum friction force that is possible between m₁ and m₂
= μ_s m₁g
= .79 x 25 x 9.8
= 193.55 N
Acceleration of m₁
= 193 .55 / 25
= 7.742 m s⁻²
This is the common acceleration in case of maximum tension required
So tension in rope
= ( 25 +91 ) x 7.742
= 898 N
4 ) In case of upper crate sliding on m₂ , maximum friction force on m₁
= μ_k m₁g
= .62 x 25 x 9.8
= 151.9 N
Acceleration of m₁
= 151.9 / 25
= 6.076 m s⁻².
Answer:
satisfaction, enjoyment and fair play
Answer:
1,373.4 N
Explanation:
The mass of the table acts at the centre in addition to the books since that is the centre of gravity of the table.
Mass of books will be 10kg+20kg+30kg=60 kg
Total mass of table and books will be 500kg+60kg=560 kg
This mass is evenly distributed into the four legs hence 560kg/4 legs=140 kg per leg
Force is product of mass and acceleration due to gravity hence F=gm
Taking g as 9.81 m/s2 then
F=140*9.81=1,373.4 N
Therefore, rhe normal force is equivalent to 1,373.4 N
Answer:
water forms hydrogen bonds
Explanation:
Answer:
80m/s
Explanation:
to find it you have to work it out by using the formula distance divided by speed to find time.