Answer:
34.6 m/s
Explanation:
From conservation of momentum, the sum of initial and final momentum are equal. Momentum is a product of mass and velocity. Initial mass will be 42.8+31.5+25.9=100.2 kg
Final mass will be 31.5+25.9=57.4 kg
From formula of momentum
M1v1=m2v2
Making v2 the subject of the formula then

Substitute 100.2 kg for M1, 19.8 m/s fkr v1 and 57.4 kg for m2 then

Answer:
A body will become positively charged when some electrons will come out from the body.Thus, positive charge is due to deficiency of electrons.
Explanation:
We know that the relation between volume and density is as follows.
Volume = 
So, V = 
= 
Now, we will calculate the area as follows.
Area = 
= 
= 
Formula to calculate the resistance is as follows.
R = 
= 
= 
Thus, we can conclude that the resistance of given wire is
.
The mass of the hoop is the only force which is computed by:F net = 2.8kg*9.81m/s^2 = 27.468 N
the slow masses that must be quicker are the pulley, ring, and the rolling sphere.
The mass correspondent of M the pulley is computed by torque τ = F*R = I*α = I*a/R F = M*a = I*a/R^2 --> M = I/R^2 = 21/2*m*R^2/R^2 = 1/2*m
The mass equal of the rolling sphere is computed by: the sphere revolves around the contact point with the table. So using the proposition of parallel axes, the moment of inertia of the sphere is I = 2/5*mR^2 for spin about the midpoint of mass + mR^2 for the distance of the axis of rotation from the center of mass of the sphere. I = 7/5*mR^2 M = 7/5*m
the acceleration is then a = F/m = 27.468/(2.8 + 1/2*2 + 7/5*4) = 27.468/9.4 = 2.922 m/s^2
Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
As we know that there is no external torque on the system of two twins
so here we will use



Part b)
Since angular momentum is conserved here as there is no external torque
so we will have



Part c)
Work done by both of them = change in kinetic energy
so we have



