<h3>
Answer:</h3>
<h3>
Explanation:</h3>
_______________
S=3 m²
F=900 N
_______________
p - ?
_______________
p=F/S=900 N / 3 m² = 300 Pa
Answer:
3.64×10⁸ m
3.34×10⁻³ m/s²
Explanation:
Let's define some variables:
M₁ = mass of the Earth
r₁ = r = distance from the Earth's center
M₂ = mass of the moon
r₂ = d − r = distance from the moon's center
d = distance between the Earth and the moon
When the gravitational fields become equal:
GM₁m / r₁² = GM₂m / r₂²
M₁ / r₁² = M₂ / r₂²
M₁ / r² = M₂ / (d − r)²
M₁ / r² = M₂ / (d² − 2dr + r²)
M₁ (d² − 2dr + r²) = M₂ r²
M₁d² − 2dM₁ r + M₁ r² = M₂ r²
M₁d² − 2dM₁ r + (M₁ − M₂) r² = 0
d² − 2d r + (1 − M₂/M₁) r² = 0
Solving with quadratic formula:
r = [ 2d ± √(4d² − 4 (1 − M₂/M₁) d²) ] / 2 (1 − M₂/M₁)
r = [ 2d ± 2d√(1 − (1 − M₂/M₁)) ] / 2 (1 − M₂/M₁)
r = [ 2d ± 2d√(1 − 1 + M₂/M₁) ] / 2 (1 − M₂/M₁)
r = [ 2d ± 2d√(M₂/M₁) ] / 2 (1 − M₂/M₁)
When we plug in the values, we get:
r = 3.64×10⁸ m
If the moon wasn't there, the acceleration due to Earth's gravity would be:
g = GM / r²
g = (6.672×10⁻¹¹ N m²/kg²) (5.98×10²⁴ kg) / (3.64×10⁸ m)²
g = 3.34×10⁻³ m/s²
Answer:
a. the index of refraction for air is slightly larger for blue than for red
Hi there!
We can begin by calculating the time taken to reach its highest point (when the vertical velocity = 0).
Remember to break the velocity into its vertical and horizontal components.
Thus:
0 = vi - at
0 = 16sin(33°) - 9.8(t)
9.8t = 16sin(33°)
t = .889 sec
Find the max height by plugging this time into the equation:
Δd = vit + 1/2at²
Δd = (16sin(33°))(.889) + 1/2(-9.8)(.889)²
Solve:
Δd = 7.747 - 3.873 = 3.8744 m