Explanation:
option D
you compare the data from your experimental results to the prediction being tested
Answer:
The velocity of the collar will be 3.076 ft/s
Explanation:
Given data
weight of the disk, Wa = 20lb
weight of rod BC, Wbc = 4lb
weight of collar, Wc = 1lb
Considering the equation of equilibrium
Vb = 1.5Wbc
Wa = 1.875 Wbc
to calculate the velocity of the collar using energy conservation equation
T1 + V1 = T2 + V2
=>
=>
=>
Wbc = 1.18rad/sec
i.e.

= 3.076 ft/ s
Answer:
The electromagnetic force.
Answer:
The time taken for the ball to return to the starting point is is 7.4 s
Explanation:
Given;
initial velocity of the ball, u = 36 m/s
the final vellocity at maximum height, v = 0
let time taken for the ball to reach maxmimum height = t
Time taken for the ball to return to the starting point is known as time of flight, calculated as;

T = (2 x 36) / 9.8
T = 7.4 s
Therefore, the time taken for the ball to return to the starting point is is 7.4 s
Remains the same
Explanation:
According to Gauss's law, the electric flux through a closed surface is proportional to the charge enclosed by the surface. So no matter how big or small we make the surface that encloses the charge, the electric flux remains the same because it only depends on the enclosed charge, not surface area.