Answer:
k = 2.279
Explanation:
Given:
Magnitude of charge on each plate, Q = 172 μC
Now,
the capacitance, C of a capacitor is given as:
C = Q/V
where,
V is the potential difference
Thus, the capacitance due to the charge of 172 μC will be
C = 
Now, when the when the additional charge is accumulated
the capacitance (C') will be
C' = 
or
C' = 
now the dielectric constant (k) is given as:

substituting the values, we get

or
k = 2.279
I think it’s Energy is lost when machines don’t work right.
Answer:
Option (b) is correct.
Explanation:
Elastic collision is defined as a collision where the kinetic energy of the system remains same. Both linear momentum and kinetic energy are conserved in case of an elastic collision.
Inelastic collision is defined as a collision where kinetic energy of the system is not conserved whereas the linear momentum is conserved. This loss of kinetic energy may due to the conversion to thermal energy or sound energy or may be due to the deformation of the materials colliding with each other.
As given in the problem, before the collision, total momentum of the system is
and the kinetic energy is
. After the collision, the total momentum of the system is
, but the kinetic energy is reduced to
. So some amount of kinetic energy is lost during the collision.
Therefor the situation describes an inelastic collision (and it could NOT be elastic).
Kinetic energy is the energy possessed by a body while in motion. It is calculated by 1/2mv², where m is the mass of the body and v is the velocity.
Therefore, kinetic energy is dependent on both mass of the body and the velocity. An increase in mass increases the kinetic energy, an increase in velocity also increases kinetic energy of the body. Thus, doubling the mass and doubling the velocity will both increase the kinetic energy of the body.
Native_Americans_in_the_United_State0000000000000000000000000
Explanation: