Explanation:
First, we will calculate the electric potential energy of two charges at a distance R as follows.
R = 2r
= 
= 0.2 m
where, R = separation between center's of both Q's. Hence, the potential energy will be calculated as follows.
U = 
= 
= 0.081 J
As, both the charges are coming towards each other with the same energy so there will occur equal sharing of electric potential energy between these two charges.
Therefore, when these charges touch each other then they used to posses maximum kinetic energy, that is,
.
Hence, K.E = 
= 
= 0.0405 J
Now, we will calculate the speed of balls as follows.
V = 
= 
= 0.142 m/s
Therefore, we can conclude that final speed of one of the balls is 0.142 m/s.
Answer:
Kepler's first law means that planets move around the Sun in elliptical orbits. An ellipse is a shape that resembles a flattened circle. ... It is zero for a perfect circle.
Answer:
a) 
b) 
c) Towards the center of the centrifuge
Explanation:
a)
Becuse the centrifuge rotates in circular motion, there's an angular acceleration tha simulates high gravity accelerations

with r the radius and ω the amgular velocity, in or case
so:
and g=9.8
solving for ω:


b) Linear speed (v) and angular speed are related by:


c) The apparent weigth is pointing towards the center of the circle, becuse angular acceleration is pointing in that direction.
The gravitional potential energy, relative to the bottom of the giant drop, in joules, is (9800) times (the height of the drop in meters).
That's the PE of the empty car only, not counting any hapless screaming souls who may be trapped in it at that moment.