<span>water vapour.
carbon dioxide.
carbon monoxide.particles.
<span>sulfur dioxide.</span></span>
3.8mL of 0.42 phosphoric acid is required.
Reaction
2H3PO4 + 3CaCL3 → Ca3(PO)4 + 6HCl
moles CaCl2 =0.16 mol/L x0.010 L = 0.0016 mol
moles of H3Po4
= 0.0016mol of CaCl2 x 2 mole of H3PO4/3mole of CaCl2
= 0.00106 mol
V of H3PO4 = 0.0016/0.42 = 0.0038L = 3.8mL
V of H3PO4=3.8mL
To know more about calculation in milliliters refer to:-
brainly.com/question/23276655
#SPJ10
Answer:
The pressure will be 0.4 atm.
Explanation:
The gas laws are a set of chemical and physical laws that allow determining the behavior of gases in a closed system. The parameters evaluated in these laws are pressure, volume, temperature and moles.
As the volume increases, the gas particles (atoms or molecules) take longer to reach the walls of the container and therefore collide with them less times per unit of time. This means that the pressure will be lower because it represents the frequency of collisions of the gas against the walls. In this way pressure and volume are related, determining Boyle's law which says:
"The volume occupied by a certain gaseous mass at constant temperature is inversely proportional to pressure"
Boyle's law is expressed mathematically as:
P*V= k
If you initially have the gas at a volume V1 and press P1, when the conditions change to a volume V2 and pressure P2, the following is satisfied:
P1*V1= P2*V2
In this case:
- P1= 1.2 atm
- V1= 4 L
- P2= ?
- V2= 12 L
Replacing:
1.2 atm* 4 L= P2* 12 L
Solving:

P2= 0.4 atm
<u><em>The pressure will be 0.4 atm.</em></u>
Answer:
if balanced reaction then 2 NaOH + MgSO4 → Mg(OH)2 + Na2SO4
Explanation:
This uses something called <span>Le Chatelier's principle. It states essentially that any stress put upon a system will be corrected.
In more simple terms, it means that in an equilibrium, such as the equation N2(g) + 3H2(g) <=> 2NH3(g), removing a reactant will cause the system to create more of said reactant to compensate for its loss, or adding excess reactant will cause the system to remove some of the added reactant. For future reference, the same principle applies to products in an equilibrium as well.
In this case, hydrogen gas is a reactant, and hydrogen is being removed. According to </span><span>Le Chatelier's principle, the system will shift to create more hydrogen gas. In essence, it will shift in the direction of the hydrogen gas, so there will be a shift toward the reactants.
To clear something up, Keq will not change, as it is a constant value with constant conditions (such as temperature, pressure, etc.).</span>