Missing question: volume of <span>solution on the left is 10 mL.
V</span>₁(solution) = 10 Ml.
c₁(solution) = 0.2 M.<span>
V</span>₂(solution)
= ?.<span>
c</span>₂(solution)
= 0.04 M.<span>
c</span>₁ -
original concentration of the solution, before it gets diluted.<span>
c</span>₂
- final concentration of the solution, after dilution.<span>
V</span>₁
- <span>volume to
be diluted.
V</span>₂ - <span>final volume after
dilution.
c</span>₁ · V₁ = c₂ · V₂<span>.
</span>10 mL · 0.2 M = 0.04 M · V₂.
V₂(solution) = 10 mL · 0.2 M ÷ 0.04 M.
V₂(solution) = 50 mL.<span>
</span>
Answer:
<h2>The answer is 4 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

where
a is the acceleration
f is the force
m is the mass
From the question
f = 20 N
m = 5 kg
We have

We have the final answer as
<h3>4 m/s²</h3>
Hope this helps you
% composition of ethanol = 34.51%
% composition of water = 65.49%
<h3>What is density?</h3>
A material's density is defined as its mass per unit volume.
Given data:
The density of ethanol = 0.7890 g/mL
The density of water = 0.9982 g/mL
The density of mixture = 0.926 g/mL
Let the % composition of ethanol = x
Let the % composition of water = 100-x
Now density of the mixture



%
Hence,
% composition of ethanol = 34.51%
% composition of water = 65.49%
Learn more about the density here:
brainly.com/question/952755
#SPJ1
*Answer:
Option A: 59.6
Explanation:
Step 1: Data given
Mass of aluminium = 4.00 kg
The applied emf = 5.00 V
watts = volts * amperes
Step 2: Calculate amperes
equivalent mass of aluminum = 27 / 3 = 9
mass of deposit = (equivalent mass x amperes x seconds) / 96500
4000 grams = (9* amperes * seconds) / 96500
amperes * seconds = 42888888.9
1 hour = 3600 seconds
amperes * hours = 42888888.9 / 3600 = 11913.6
amperes = 11913.6 / hours
Step 3: Calculate kilowatts
watts = 5 * 11913.6 / hours
watts = 59568 (per hour)
kilowatts = 59.6 (per hour)
The number of kilowatt-hours of electricity required to produce 4.00kg of aluminum from electrolysis of compounds from bauxite is 59.6 kWh when the applied emf is 5.00V