Answer:
2Mg + O₂ ⟶ 2MgO
Explanation:
Step 1. Start with the most complicated-looking formula (O₂?).
Put a 1 in front of it.
Mg + 1O₂ ⟶ MgO
Step 2. Balance O.
We have fixed 2 O on the left. We need 2O on the right. Put a 2 in front of MgO.
Mg + 1O₂ ⟶ 2MgO
Step 3. Balance Mg.
We have fixed 2 Mg on the right-hand side. We need 2 Mg atoms on the left. Put a 2 in front of Mg.
2Mg + 1O₂ ⟶ 2MgO
Every formula now has a coefficient. The equation should be balanced. Let’s check.
<u>Atom</u> <u>On the left</u> <u>On the righ</u>t
Mg 2 2
O 2 2
All atoms are balanced.
The balanced equation is
2Mg + O₂ ⟶ 2MgO
Answer:
The five assumption of Kinetic molecular theory are given below.
Explanation:
Kinetic molecular theory of gasses stated that,
1) Gases consist of large number of smaller particles which are distance apart from each others.
2) The gas molecules collide with each other and also with wall of container and this collision is elastic.
3) Gas molecules are in continuous random motion and posses kinetic energy.
4) The forces of attraction between gas molecules are very small and considered negligible.
5) The temperature of gas is directly proportional to average kinetic energy of gas molecules.
Answer:
a. 5.0 x 10⁷ brown grains = 50 million
b. 5.0 x 10³ brown grains = 5000
Explanation:
The concentration of 2 % brown sand means we have for every 100 grains of sand 2 are brown.
We need to calculate the number of brown sand in the bucket as follows:
= 2.5 x 10⁹ billion grains of sand x (2 brown grains/ 100 grains of sand)
= 5.0 x 10⁷ brown grains
Likewise if the concentration of brown sand is 2.0 ppm, it mean that we have 2 brown grain per every million grains of sand.
= 2.5 x 10⁹ billion grains of sand x ( 2.0 brown grains/10⁶ grains of sand )
= 5.0 x 10³ brown grains
The answers make sense since a concentration of 1 part per million is ten thousandths of a 1 percent
I think its becuse the shoreline is shalow water that is warmed by the sun? ...... I may be rong