There is two of these questions
6.28×1013+7.30×1011 this =13741.94
Answer:
275.3 nm is the wavelength of light required for mercury.
Mercury can not be used to generate electricity from the sun because wavelength at which mercury will emit an electron is smaller than 500 nm.
Explanation:
The wavelength of light required for mercury to emit an electron.
The wavelength of the radiation = 
Energy required fro mercury to to emit an electron = E
Energy required fro mercury to to emit an electron will the energy if the radiation = E' = 
E' = E
To calculate the wavelength of light, we use the equation:
where,
= wavelength of the light
h = Planck's constant = 
c = speed of light =



Wavelength of the sun light in the visible region = 500 nm
500 nm > 275.3 nm

Less energy < more energy
So, this means that mercury can not be used to generate electricity from the sun.
Answer:
Goes from ocean (liquid) to water vapor (gas) to clouds (liquid) to snow (solid) then melts in a river (liquid)
Good luck my friend :)
Answer:
65.08 g.
Explanation:
- For the reaction, the balanced equation is:
<em>2AlCl₃ + 3Br₂ → 2AlBr₃ + 3Cl₂,</em>
2.0 mole of AlCl₃ reacts with 3.0 mole of Br₂ to produce 2.0 mole of AlBr₃ and 3.0 mole of Cl₂.
- Firstly, we need to calculate the no. of moles of 36.2 grams of AlCl₃:
<em>n = mass/molar mass</em> = (36.2 g)/(133.34 g/mol) = <em>0.2715 mol.</em>
<u><em>Using cross multiplication:</em></u>
2.0 mole of AlCl₃ reacts with → 3.0 mole of Br₂, from the stichiometry.
0.2715 mol of AlCl₃ reacts with → ??? mole of Br₂.
∴ The no. of moles of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = (0.2715 mol)(3.0 mole)/(2.0 mole) = 0.4072 mol.
<em>∴ The mass of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = no. of moles of Br₂ x molar mass</em> = (0.4072 mol)(159.808 g/mol
) = <em>65.08 g.</em>