Answer:
- <u><em>1.12 liters</em></u>
Explanation:
<u>Calculating number of moles</u>
- Molar mass of O₂ = 32 g
- n = Given weight / Molar mass
- n = 1.6/32
- n = 0.05 moles
<u>At STP</u>
- One mole of O₂ occupies 22.4 L
- Therefore, 0.05 moles will occupy :
- 22.4 L x 0.05 = <u><em>1.12 L</em></u>
It's classified as an acid
To balance the the chemical reaction, the number of moles
per element is balance is both side of the reaction and also the charge in both
sides of the reation. to balnce the reaction:
S2O3 2- + Cu 2+ ---> S4O6 2- + Cu+
2S2O3 2- + Cu 2+ ---> S4O6 2- + Cu+ + e
Answer:
P = 0.0009417 atm
Or,
P = 9.417 × 10⁻⁴ atm
Or,
P = 0.0954157 kPa
Or,
P = 0.715677 mmHg (Torr)
Explanation:
Data Given:
Moles = n = 3.2 mol
Temperature = T = 312 K
Pressure = P = ?
Volume = V = 87 m³ = 87000 L
Formula Used:
Let's assume that the gas is acting as an Ideal gas, the according to Ideal Gas Equation,
P V = n R T
where; R = Universal Gas Constant = 0.082057 atm.L.mol⁻¹.K⁻¹
Solving Equation for P,
P = n R T / V
Putting Values,
P = (3.2 mol × 0.082057 atm.L.mol⁻¹.K⁻¹ × 312 K) ÷ 87000 L
P = 0.0009417 atm
Or,
P = 9.417 × 10⁻⁴ atm
Or,
P = 0.0954157 kPa
Or,
P = 0.715677 mmHg (Torr)