Sound travels at approximately 1,100 feet per second (766 miles per hour). Radio waves travel at the speed of light, which is approximately 186,000 miles per second. This means that in the time radio waves travel the length of a football field, light can travel further than all the way around the world.
Take the missile's starting position to be the origin. Assuming the angles given are taken to be counterclockwise from the positive horizontal axis, the missile has position vector with components


The missile's final position after 9.20 s has to be a vector whose distance from the origin is 19,500 m and situated 32.0 deg relative the positive horizontal axis. This means the final position should have components


So we have enough information to solve for the components of the acceleration vector,
and
:


The acceleration vector then has direction
where

Answer:
b)
Explanation:
Normal force, is always directed upward the surface over which is placed the object, and can adopt any value, as required to meet Newton's 2nd Law.
In this case, as the external force on the suitcase pulls upward, in order to counteract the influence of gravity, normal force is less than the weight of the suitcase, as follows:
F + Fn = m*g
⇒ Fn = m*g - F
So, the normal force is equal to the magnitude of the weight of the suitcase (m*g) minus the magnitude of the force of the pull (F) which is the same expressed by the statement b.
The work is path independent since we have a conservative force.
Thus
Answer (1)
<span>NO.
Air resistance does not affect the motion of a falling object differently when the mass is greater because the mass of an object does not in any way affect the speed of falling due to gravity, and air resistance depends only on the speed of the object and its surface area.</span>