1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali5045456 [20]
3 years ago
8

How can you prove: secθ = cscθtanθ

Mathematics
1 answer:
zavuch27 [327]3 years ago
3 0

\sec \theta=\csc \theta\tan \theta\\\\ \dfrac{1}{\cos \theta}=\dfrac{1}{\sin \theta}\cdot\dfrac{\sin \theta}{\cos \theta}\\\\ \dfrac{1}{\cos \theta}=\dfrac{1}{\cos \theta}

You might be interested in
A high school basketball player attempted 42 free throws in a season. An analyst determined that the player successfully made 5
patriot [66]
The answer is 35 free throws
5 0
4 years ago
Read 2 more answers
Evaluate 9 ÷ 3[(18 − 6) − 22].<br><br> 0.188<br> 0.375<br> 24<br> 48
Natasha2012 [34]

Answer:

Step-by-step explanation:

0.375

6 0
3 years ago
Read 2 more answers
Find the area of the following shape. Show work.
Serga [27]

Answer:

The total area:

12 units²

Step-by-step explanation:

There are three parts on this shape:

1 big right triangle

1 rectangle

1 small right triangle

  • Big right triangle:

area = (4*4)/2 = 16/2 = 8units²

  • Rectangle:

area = 2*1 = 2units²

  • Small right triangle:

area = (2*2)/2 = 2units²

  • Total area

8+2+2 = 12 units²

6 0
3 years ago
A circle has the equation 2x²+12x+2y²−16y−150=0.
KonstantinChe [14]

Answer: B. The coordinates of the center are (-3,4), and the length of the radius is 10 units.

Step-by-step explanation:

The equation of a circle in the center-radius form is:

(x-h)^{2} +(y-k)^{2}=r^{2} (1)

Where (h,k) are the coordinates of the center and r is the radius.

Now, we are given the equation of this circle as follows:

2x^{2}+12x+2y^{2}-16y-150=0 (2)

And we have to write it in the format of equation (1). So, let's begin by applying common factor 2 in the left side of the equation:

2(x^{2}+6x+y^{2}-8y-75)=0 (3)

Rearranging the equation:

x^{2}+6x+y^{2}-8y=75 (4)

(x^{2}+6x)+(y^{2}-8y)=75 (5)

Now we have to complete the square in both parenthesis, in order to have a perfect square trinomial in the form of (a\pm b)^{2}=a^{2}\pm+2ab+b^{2}:

<u>For the first parenthesis:</u>

x^{2}+6x+b^{2}

We can rewrite this as:

x^{2}+2(3)x+b^{2}

Hence in this case b=3 and b^{2}=9:

x^{2}+2(3)x+3^{2}=x^{2}+6x+9=(x+3)^{2}

<u>For the second parenthesis:</u>

y^{2}-8y+b^{2}

We can rewrite this as:

y^{2}-2(4)y+b^{2}

Hence in this case b=-3 and b^{2}=9:

y^{2}-2(4)y+4^{2}=y^{2}-8y+16=(y-4)^{2}

Then, equation (5) is rewritten as follows:

(x^{2}+6x+9)+(y^{2}-8y+16)=75+9+16 (6)

<u>Note we are adding 9 and 16 in both sides of the equation in order to keep the equality.</u>

Rearranging:

(x-3)^{2}+(y-4)^{2}=100 (7)

At this point we have the circle equation in the center radius form (x-h)^{2} +(y-k)^{2}=r^{2}

Hence:

h=-3

k=4

r=\sqrt{100}=10

8 0
3 years ago
PLEASE HELP MEE!! SHOW YOUR WORK PLS
sleet_krkn [62]

Answer:

(8, -8)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients
  • Coordinates (x, y)
  • Solving systems of equations using substitution/elimination

Step-by-step explanation:

<u>Step 1: Define Systems</u>

y = x - 16

5y = 2x - 56

<u>Step 2: Solve for </u><em><u>x</u></em>

  1. Substitute in <em>y</em>:                                                                                                5(x - 16) = 2x - 56
  2. Distribute 5:                                                                                                     5x - 80 = 2x - 56
  3. [Subtraction Property of Equality] Subtract 2x on both sides:                     3x - 80 = -56
  4. [Addition Property of Equality] Add 80 on both sides:                                3x = 24
  5. [Division Property of Equality] Divide 3 on both sides:                                x = 8

<u>Step 3: Solve for </u><em><u>y</u></em>

  1. Define original equation:                                                                               y = x - 16
  2. Substitute in <em>x</em>:                                                                                                y = 8 - 16
  3. Subtract:                                                                                                          y = -8
5 0
3 years ago
Other questions:
  • 7. 4y(5y - 11) – 2y(3y + 10)
    14·1 answer
  • A box resting on a table has a mass of 5.0 kg what is its weight
    13·1 answer
  • Prove that sin(n) diverges
    10·1 answer
  • A triangle with vertices at (0,4), (3,5), and (2, -l) is rotated 90 degree counterclockwise about the origin. What are the verti
    15·1 answer
  • Review the graph of y = sin(x). Based on the graph, what are the domain and range of the sine function? Y 3+ 2+ domain: [0, 2TT)
    15·1 answer
  • 6c-9d=111 5c-9d=103<br>how to solve this problem ​
    7·2 answers
  • Kira brought chocolate and vanilla cupcakes to school for her birthday. 80 students decided to take a cupcake, and 32 of them pi
    6·1 answer
  • Help me please ❤️<br> Thank you
    15·2 answers
  • If I lost 4% of 100 pencils an 6% of 200 pens how many pencils do I have left and how many pens do I have left?
    13·1 answer
  • How many multiples of 4 are there between 10 and 375<br><br>need answer :3​
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!