B) the plates are in constant motion and as a result the boundaries are where they interact
Answer:

Explanation:
The pump is modelled after applying Principle of Energy Conservation, whose form is:

The head associated with the pump is cleared:

Inlet and outlet velocities are found:




Now, the head associated with the pump is finally computed:


The power that pump adds to the fluid is:



Answer:
hello your question lacks the required question attached below is the missing diagram
Forces in GJ = -4.4444 i.e. 4.4444 tons
Forces in IG = 15.382 tons ( T )
Explanation:
Forces in GJ = -4.4444 i.e. 4.4444 tons
Forces in IG = 15.382 tons ( T )
attached below is the detailed solution
Answer:
Test code:
>>u=10;
>>g=9.8;
>>q=100;
>>m0=100;
>>vstar=10;
>>tstar=fzero_rocket_example(u, g, q, m0, vstar)
Explanation:
See attached image
Answer:
Flow velocity
50.48m/s
Pressure change at probe tip
1236.06Pa
Explanation:
Question is incomplete
The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to the flow. If the differential height between the water columns connected to the two outlets of the probe is 0.126m, determine (a) the flow velocity and (b) the pressure rise at the tip of the probe. The air temperature and pressure in the duct are 352k and 98 kPa, respectively
solution
In this question, we are asked to calculate the flow velocity and the pressure rise at the tip of probe
please check attachment for complete solution and step by step explanation