Da, sigur. cu ce ai nevoie de ajutor?
Answer:
1791 secs ≈ 29.85 minutes
Explanation:
( Initial temperature of slab ) T1 = 300° C
temperature of water ( Ts ) = 25°C
T2 ( final temp of slab ) = 50°C
distance between slab and water jet = 25 mm
<u>Determine how long it will take to reach T2</u>
First calculate the thermal diffusivity
∝ = 50 / ( 7800 * 480 ) = 1.34 * 10^-5 m^2/s
<u>next express Temp as a function of time </u>
T( 25 mm , t ) = 50°C
next calculate the time required for the slab to reach 50°C at a distance of 25mm
attached below is the remaining part of the detailed solution
Answer:
%Reduction in area = 73.41%
%Reduction in elongation = 42.20%
Explanation:
Given
Original diameter = 12.8 mm
Gauge length = 50.80mm
Diameter at the point of fracture = 6.60 mm (0.260 in.)
Fractured gauge length = 72.14 mm.
%Reduction in Area is given as:
((do/2)² - (d1/2)²)/(do/2)²
Calculating percent reduction in area
do = 12.8mm, d1 = 6.6mm
So,
%RA = ((12.8/2)² - 6.6/2)²)/(12.8/2)²
%RA = 0.734130859375
%RA = 73.41%
Calculating percent reduction in elongation
%Reduction in elongation is given as:
((do) - (d1))/(d1)
do = 72.14mm, d1 = 50.80mm
So,
%RA = ((72.24) - (50.80))/(50.80)
%RA = 0.422047244094488
%RA = 42.20%