Hi! I believe the answer is 2 meters(:
Answer:
14.506°C
Explanation:
Given data :
flow rate of water been cooled = 0.011 m^3/s
inlet temp = 30°C + 273 = 303 k
cooling medium temperature = 6°C + 273 = 279 k
flow rate of cooling medium = 0.02 m^3/s
Determine the outlet temperature
we can determine the outlet temperature by applying the relation below
Heat gained by cooling medium = Heat lost by water
= ( Mcp ( To - 6 ) = Mcp ( 30 - To )
since the properties of water and the cooling medium ( water ) is the same
= 0.02 ( To - 6 ) = 0.011 ( 30 - To )
= 1.82 ( To - 6 ) = 30 - To
hence To ( outlet temperature ) = 14.506°C
Answer:
Option D
160 kHz
Explanation:
Since we must use at least one synchronization bit, total message signal is 15+1=16
The minimum sampling frequency, fs=2fm=2(5)=10 kHz
Bandwith, BW required is given by
BW=Nfs=16(10)=160 kHz
Answer:
A tsunami's trough, the low point beneath the wave's crest, often reaches shore first. When it does, it produces a vacuum effect that sucks coastal water seaward and exposes harbor and sea floors. As the tsunami approaches water is drawn back from the beach to effectively help feed the wave. In a tide the wave is so long that this happens slowly, over a few hours.
Explanation:
The answer is the test is being tested towards the lungs the test is done by scanning your body the tools are called “the x rat visional lock space” and the rubber tool is called a deeldo it’s purple with a pencil looking shape perfect for the body.