1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Over [174]
3 years ago
9

A wine aerator is a small, in-bottle, hand-held pour-through or decantor top device using the venturi effect for aerating the wi

ne. These devices mix air into the wine as it flows through (or over), increasing exposure to oxygen and causing aeration. Apparently, wine which has been aerated tastes better. You want to design a new aerator that will also chill the wine as it is poured. This aerator will be aventuri-shaped tube with an input diameter of 1 cm and an output diameter of 1 mm. Determine the flow rate of the wine exiting theventure tube while pouring as a function of pouring angle and volume of wine in the bottle. The wine bottle can be modeled as a cylinder of 10 cm in diameter and length of 35 cm. You can assume the pressure at the exit is 1 atm and you can assume the head in the bottle while pouring has a pressure of 1 atm.You will need to determine the pressure at the inlet of the aerator as a function of time at various angles. Assume the bottle starts full. Also, calculate the resultant force needed to keep the device attached to the top of your wine bottle as a function of time for the same angles. Comment on maximum forces. Finally, you need to determine the rate that energy needs to be removed to chill the wine from room temperature to 4 C as it flows through the aerator.

Engineering
1 answer:
Lesechka [4]3 years ago
8 0

Answer:

Input area=0.785x10^-4m^2

Output area=0.785x10^-6m^2

P1-p2=0.49x0.99v2

V1 =0.01v2

Explanation:

Please see attachment for step by step guide

You might be interested in
A polyethylene rod exactly 10 inches long with a cross-sectional area of 0.04 in2 is used to suspend a weight of 358 lbs-f (poun
Nadya [2.5K]

Answer:

Final length of the rod = 13.90 in

Explanation:

Cross Sectional Area of the polythene rod, A = 0.04 in²

Original length of the polythene rod, l = 10 inches

Tensile modulus for the polymer, E = 25,000 psi

Viscosity, \eta = 1*10^{9} psi -sec

Weight = 358 lbs - f

time, t = 1 hr = 3600 sec

Stress is given by:

\sigma = \frac{Force}{Area} \\\sigma = \frac{358}{0.04} \\\sigma = 8950 psi

Based on Maxwell's equation, the strain is given by:

strain = \sigma ( \frac{1}{E} + \frac{t}{\eta} )\\Strain = 8950 ( \frac{1}{25000} + \frac{3600}{10^{9} } )\\Strain = 0.39022

Strain = Extension/(original Length)

0.39022 = Extension/10

Extension = 0.39022 * 10

Extension = 3.9022 in

Extension = Final length - Original length

3.9022 =  Final length - 10

Final length = 10 + 3.9022

Final length = 13.9022 in

Final length = 13.90 in

7 0
3 years ago
The following are the results of a sieve analysis. U.S. sieve no. Mass of soil retained (g) 4 0 10 18.5 20 53.2 40 90.5 60 81.8
il63 [147K]

Answer:

a.)

US Sieve no.                         % finer (C₅ )

4                                                  100

10                                                95.61

20                                               82.98

40                                               61.50

60                                               42.08

100                                              20.19

200                                              6.3

Pan                                               0

b.) D10 = 0.12, D30 = 0.22, and D60 = 0.4

c.) Cu = 3.33

d.) Cc = 1

Explanation:

As given ,

US Sieve no.             Mass of soil retained (C₂ )

4                                            0

10                                          18.5

20                                         53.2

40                                         90.5

60                                         81.8

100                                        92.2

200                                       58.5

Pan                                        26.5

Now,

Total weight of the soil = w = 0 + 18.5 + 53.2 + 90.5 + 81.8 + 92.2 + 58.5 + 26.5 = 421.2 g

⇒ w = 421.2 g

As we know that ,

% Retained = C₃ = C₂×\frac{100}{w}

∴ we get

US Sieve no.               % retained (C₃ )               Cummulative % retained (C₄)

4                                            0                                           0

10                                          4.39                                      4.39

20                                         12.63                                     17.02

40                                         21.48                                     38.50

60                                         19.42                                     57.92

100                                        21.89                                     79.81

200                                       13.89                                     93.70

Pan                                        6.30                                      100

Now,

% finer = C₅ = 100 - C₄

∴ we get

US Sieve no.               Cummulative % retained (C₄)          % finer (C₅ )

4                                                     0                                          100

10                                                  4.39                                      95.61

20                                                 17.02                                     82.98

40                                                 38.50                                    61.50

60                                                 57.92                                    42.08

100                                                79.81                                     20.19

200                                                93.70                                   6.3

Pan                                                 100                                        0

The grain-size distribution is :

b.)

From the diagram , we can see that

D10 = 0.12

D30 = 0.22

D60 = 0.12

c.)

Uniformity Coefficient = Cu = \frac{D60}{D10}

⇒ Cu = \frac{0.4}{0.12} = 3.33

d.)

Coefficient of Graduation = Cc = \frac{D30^{2}}{D10 . D60}

⇒ Cc = \frac{0.22^{2}}{(0.4) . (0.12)} = 1

3 0
2 years ago
A converging nozzle has an exit area of 0.001 m2. Air enters the nozzle with negligible velocity at a pressure of 1 MPa and a te
Artyom0805 [142]

Explanation:

a converging nozzle has an exit area of 0.001 m2. Air enters the nozzle with negligible velocity at a pressure of 1 MPa and a temperature of 360 K. For isentropic flow of an ideal gas with k = 1.4 and the gas constant R = Ru/MW = 287 J/kg-K, determine the mass flow rate in kg/s and the exit Mach number for back pressures

100% (3 ratings)

A_2 = 0.001 m^2 P_1 = 1 MPa, T_1 = 360 k P_2 = 500 kpa p^gamma - 1/gamma proportional T (1000/500)^1.4 - 1/1.4 = (360/T_2) 2^4/14 = 360/T_2 T_2

3 0
3 years ago
A homogeneous 800kg bar AB is supported at either end by a cable asshown in the figure
aleksandr82 [10.1K]

The smallest area of each cable if the stress is not to exceed 90MPa in bronze is 43.6 mm² and 120MPa in steel is 32.7 mm².

<h3>What is normal stress?</h3>

If the direction of deformation force is perpendicular to the cross-sectional area of ​​the body, the stress is called normal stress. Changes in wire length and body volume will be normal.

σ = P/A

Where, σ = Normal stress

P = Pressure

A = Area

1 Kg = 9.81 N

800 kg = 7848 N

Since the rod is half bronze and half steel

800 kg = 7848/2

= 3924 N

Pₙ = Fₙ = 3924 N                       [n = Bronze]

Pₓ =  3924 N                             [x = steel]

Given,

σₙ = 90MPa

σₓ = 120MPa

Aₙ = ?

Aₓ = ?

Aₙ = Pₙ/σₙ

Aₙ = 3924/90

Aₙ = 43.6 mm²

Aₓ = Pₓ/σₓ

Aₓ = 3924/120

Aₓ = 32.7 mm²

To know more about normal stress, visit:

brainly.com/question/28012990

#SPJ9

4 0
1 year ago
The time to failure for a gasket follows the Weibull distribution with ß = 2.0 and a characteristic life of 300 days. What is th
Aleks04 [339]

Answer:

64.11% for 200 days.

t=67.74 days for R=95%.

t=97.2 days for R=90%.

Explanation:

Given that

β=2

Characteristics life(scale parameter α)=300 days

We know that Reliability function for Weibull distribution is given as follows

R(t)=e^{-\left(\dfrac{t}{\alpha}\right)^\beta}

Given that t= 200 days

R(200)=e^{-\left(\dfrac{200}{300}\right)^2}

R(200)=0.6411

So the reliability at 200 days 64.11%.

When R=95 %

0.95=e^{-\left(\dfrac{t}{300}\right)^2}

by solving above equation t=67.74 days

When R=90 %

0.90=e^{-\left(\dfrac{t}{300}\right)^2}

by solving above equation t=97.2 days

7 0
3 years ago
Other questions:
  • A reversible refrigerator operates between a low temperature reservoir at TL and a high temperature reservoir at TH . Its coeffi
    12·1 answer
  • If engineering is easy then why don't most people join?
    15·2 answers
  • ). A company periodically tests its product for tread wear under simulated conditions. Thirty random samples, each containing 5
    11·1 answer
  • A 15.00 mL sample of a solution of H2SO4 of unknown concentration was titrated with 0.3200M NaOH. the titration required 21.30 m
    12·1 answer
  • Which of the following is NOT true about hydraulic systems?
    12·1 answer
  • is sampled at a rate of to produce the sampled vector and then quantized. Assume, as usual, the minimum voltage of the dynamic r
    9·1 answer
  • Need help fast I been stuck in this for the longest
    6·1 answer
  • The current at resonance in a series L-C-R circuit is 0.2mA. If the applied voltage is 250mV at a frequency of 100 kHz and the c
    9·1 answer
  • Match the scenario to the problem-solving step it represents.
    7·1 answer
  • A solid steel shaft ABCDE turns freely in bearings at points A and E. The shaft is driven by the gear at C, which applies a torq
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!