Answer:
hello your question has some missing information attached to the answer is the missing component
Answer : αaxial,p = -6.034 ksi ( compressive )
αbend,p = 19.648 ksi ( tensile )
Explanation:
αaxial, p =
equation 1
αbend, p =
equation 2
P = load = 35 kips
A = area of column = 5.8 
d = column cross section depth = 9.5 in
= 55.0 
Hence equation 1 becomes
αaxial,p = -35 / 5.8 = - 6.034 ksi ( compressive )
equation 2 becomes
αbend, p =
= + 19.648 ksi ( tensile )
Answer:
Stephen Covey believes this principle is the key to effective interpersonal communication. Seek first to understand, then to be understood. This habit is about communicating with others. It's about developing the habit of listening carefully and really understanding the other person BEFORE giving your thoughts.
Explanation:
Answer:
critical stress required for the propagation is 27.396615 ×
N/m²
Explanation:
given data
specific surface energy = 0.90 J/m²
modulus of elasticity E = 393 GPa = 393 ×
N/m²
internal crack length = 0.6 mm
to find out
critical stress required for the propagation
solution
we will apply here critical stress formula for propagation of internal crack
( σc ) =
.....................1
here E is modulus of elasticity and γs is specific surface energy and a is half length of crack i.e 0.3 mm = 0.3 ×
m
so now put value in equation 1 we get
( σc ) =
( σc ) =
( σc ) = 27.396615 ×
N/m²
so critical stress required for the propagation is 27.396615 ×
N/m²
Here is the flow sheet. Hope this helps have a great day!!
Explanation:
≈4.8
There really isn't an elegant way to express it. Just plug and chug for irrationals raised to other irrationals.