Answer:
50 degree.
Explanation:
Given that the components of vector A are given as follows: Ax = 5.6 Ay = -4.7
The angle between vector A and B in the positive direction of x-axis will be achieved by using the formula:
Tan Ø = Ay/Ax
Substitute Ay and Ax into the formula above.
Tan Ø = -4.7 / 5.6
Tan Ø = -0.839
Ø = tan^-1(-0. 839)
Ø = - 40 degree
Therefore, the angle between vector A and B positive direction of x-axis will be
90 - 40 = 50 degree.
The answer is b because ya its b
Answer:
5.5 m/s
Explanation:
Assuming the bottle is initially stationary, we can write the law of conservation of momentum as follows:

where
is the mass of the ball
is the initial velocity of the ball
is the mass of the bottle
is the final velocity of the bottle
is the final velocity of the ball
Solving for
,

Answer:
α=0.625rad/s^2
v=340m/s
w=10rad/s
θ=320rad
Explanation:
Constant angular acceleration = ∆w/∆t
angular acceleration = 20/32
α=0.625rad/s^2
Linear velocity v=wr
v = 20×17= 340m/s
Average angular velocity
w0+w1/2
w= 0+20/2
w= 20/2
w=10rad/s
What angle did it rotate with
θ=wt
θ= 10×32
=320rad
The average force on the squid during the ejection of 0.60 kg of water at a velocity of 15.0 m/s in 0.15 seconds is 60 N.
We can calculate the average force with the average acceleration as follows:
(1)
Where:
- m: is the mass of water = 0.60 kg
: is the average acceleration
The <em>average acceleration</em> is given by the change of velocity in an interval of time
(2)
Where:
: is the initial velocity = 0 (the squid is at rest)
: is the final velocity = 15.0 m/s
: is the initial time = 0
: is the final time = 0.15 s
Now we can find the <em>average force</em> after entering equation (2) into (1)
Therefore, the average force on the squid during the propulsion is 60 N.
Find more about average force here:
I hope it helps you!