Plutonium= Pu, 94, 244,94,94
Chromium= Cr, 24,52, 24,24
Neon = Ne, 10,20,10,10
Gold= Au, 79,197,79,79
Radon = Ra ,86,222,86,86
Answer:
1. The planet doesn't have a thick enough atmosphere.
2. There have been multiple impacts on the planet.
Explanation:
As the planet is very close to the star, there is high possibility that it will not have an atmosphere. Just like Mercury doesn't have one. Presence of a very large crater with basin indicates that in the past a huge body had hit the planet and thus creating the crater with basin. Also, it must be very old.
Second observation that is given is the presence of smaller craters in the basin. This indicates impact craters created by smaller objects. If the planet had an atmosphere, these smaller objects would not be able to penetrate and reach the surface. Thus presence of these smaller crater indicate towards the planet not having any atmosphere.
Answer: 5.89 x 10¹⁰ Oreos to reach the Moon.
Answer:
The time is 133.5 sec.
Explanation:
Given that,
One side of cube = 10 cm
Intensity of electric field = 11 kV/m
Suppose How long will it take to raise the water temperature by 41°C Assume that the water has no heat loss during this time.
We need to calculate the rate of energy transfer from the beam to the cube
Using formula of rate of energy


Put the value into the formula


We need to calculate the amount of heat
Using formula of heat


Put the value into the formula


We need to calculate the time
Using formula of time

Put the value into the formula


Hence, The time is 133.5 sec.