Answer:
The pushing of the car by you and your friends is the applied force and when the car moves, it means that the velocity has changed thus causing the movement or acceleration.
Explanation:
Newton's work on forces regarding motion can never be neglected by scientists. Sir Isaac Newton when he was alive, among several of his works he proposed the three laws guiding the forces of motion. In this question we are only going to be treating only one out of the three Newton's Law of motion and that is the second Law Of Newton's laws of motion.
The second Law Of Newton's laws of motion states that the acceleration of an object is directly proportional to the applied force and inversely proportional to the object's mass.
(1). Now, to the question: " How are you and your friends applying Newton's second law of motion here? "
The pushing of the car by you and your friends is the applied force and when the car moves, it means that the velocity has changed thus causing the movement or acceleration.
According to the law, the more the Force, the more the acceleration.
(2). For the second part of the question, " What if the car you were traveling in was a large SUV?"
From the law stated above we see that the acceleration is inversely proportional to the mass, thus if the car is a large SUV, It means that more force is needed to change the car's velocity.
The number of lines per mm in the diffraction grating is 326.
<h3>What is diffraction grating?</h3>
A diffraction grating is a type of optical instrument obtained with a continuous pattern. The pattern of the diffracted light by a grating depends on the structure and number of elements present.
The given data in the problem is
is the angle formed between the path of the incident light and the diffracted light = 9. 2°
λ is the wavelength of the light=490nm=4.9
N is the number of lines per mm in the diffraction grating=?
n is ordered = 1
The formula for the diffraction grating is;

The number of lines per mm is found as;

Hence the number of lines per mm in the diffraction grating is 326.
To learn more about diffraction grating refer to the link;
brainly.com/question/1812927
(3) 8.3 N/kg. The gravitational field strength at a point is the force per unit mass exerted on a mass placed at that point. So at the point where the Hubble telescope is, it is (9.1 x 10^4)N/(1.1 x 10^4 kg) = 8.3 N/kg
Fam
Answer:
The steps are outlined in the explanation below.
Explanation:
The average velocity is derived midpoint from the initial to the final velocity. Here is the proof:
Find the total displacement:
let the displacement be given by the letter s
Then since the average velocity is defined as: 
where t = final time
t₀ = initial time
v = final speed
v₀ = initial time
where x denotes the position, then

where v =
and dx = change in distance with respect to time.
Acceleration formulae is:
a=Fnet/mass
According to the question
a=7500N/1500kg
a=5m/s sq.