Answer:
27.22 m/s
Explanation:
Let the speed of clay before impact is u.
the speed of clay and target is v after impact.
use conservation of momentum
momentum before impact momentum after impact
mass of clay x u = (mass of clay + mass of target) x v
100 x u = (100 + 500) x v
u = 6 v .....(1)
distance, s = 2.1 m
μ = 0.5
final velocity is zero. use third equation of motion
v'² = v² + 2as
0 = v² - 2 x μ x g x s
v² = 2 x 0.5 x 9.8 x 2.1 = 20.58
v = 4.54 m/s
so by equation (1)
u = 6 x 4.54 = 27.22 m/s
thus, the speed of clay before impact is 27.22 m/s.
Answer:
The pressure is 2.167 psi.
Explanation:
Given that,
Diameter = 1.5 feet
Height = 10 feet
We need to calculate the psi at 5 feet
Using formula of pressure at a depth in a fluid
Suppose the fluid is water.
Then, the pressure is

Where, P = pressure
= density
h = height
Put the value into the formula


Pressure in psi is


Hence, The pressure is 2.167 psi.
<span>First, we need to determine the entire area of your front line by multiplying its length times its width.
18.0*20.0 = 360.0 square feet
We can use the rate of accumulation of snow, combined with this figure, to determine how much snow accumulates on your lawn per minute.
360.0 sq ft * 1050 flakes/min/sq ft = 378,000 flakes/min
We can then use the mass of a snowflake to calculate total snow accumulation per minute.
378,000 flakes/min * 2.00 mg/flake = 756,000 mg/min
Finally, we can use this number to determine accumulation per hour.
756,000 mg/min * 60 min/hr =
45,360,000 mg/hr</span>
Answer:
Super idoo di shaw lung domini di shaw
Answer:
The x component of the electric field at y=2m is 
Explanation:
For a linear charge, using <u>Gauss Law</u>, we get that the <em>Electric field (radial) has the following form</em>

<em>where λ is the charge for longitud unit given in the problem, r is replaced by the y coordinate, and there are two known more data</em>. So

is the x component of the Electric field at y=2m on the y axis, which is what we wanted to know.