Answer:
is his final displacement from the point A after 60 seconds.
Explanation:
Given:
Cyclist is moving away from A.
- velocity of cyclist,

- displacement of the cyclist from point A at the time of observation,

- time after which the next observation is to be recorded,

Now as the cyclist is moving away from point A his change in displacement after the mentioned time:



<u>Now the the final displacement from point A after the mentioned time:</u>



Answer:
A
Explanation:
All of the frictions are the same, but weight always goes straight down so it can only be A or B. Since they are going down a slope, then the normal force must be sloped. A is the only one out of A and B with a sloped normal force, so it has to be A
Answer: 20 kgm/s
Explanation:
Given that M1 = M2 = 10kg
V1 = 5 m/s , V2 = 3 m/s
Since momentum is a vector quantity, the direction of the two object will be taken into consideration.
The magnitude of their combined
momentum before the crash will be:
M1V1 - M2V2
Substitute all the parameters into the formula
10 × 5 - 10 × 3
50 - 30
20 kgm/s
Therefore, the magnitude of their combined momentum before the crash will be 20 kgm/s
Answer:
Race refers to physical differences that groups and cultures consider socially significant. For example, people might identify their race as Aboriginal, African American or Black, Asian, European American or White, Native American, Native Hawaiian or Pacific Islander, Māori, or some other race.
Explanation:
hope this helps
Answer: 2. Solution A attains a higher temperature.
Explanation: Specific heat simply means, that amount of heat which is when supplied to a unit mass of a substance will raise its temperature by 1°C.
In the given situation we have equal masses of two solutions A & B, out of which A has lower specific heat which means that a unit mass of solution A requires lesser energy to raise its temperature by 1°C than the solution B.
Since, the masses of both the solutions are same and equal heat is supplied to both, the proportional condition will follow.
<em>We have a formula for such condition,</em>
.....................................(1)
where:
= temperature difference
- c= specific heat of the body
<u>Proving mathematically:</u>
<em>According to the given conditions</em>
- we have equal masses of two solutions A & B, i.e.

- equal heat is supplied to both the solutions, i.e.

- specific heat of solution A,

- specific heat of solution B,

&
are the change in temperatures of the respective solutions.
Now, putting the above values


Which proves that solution A attains a higher temperature than solution B.