The period T is time it takes for one complete cycle or from "trough to trough" so the reverse is trough per sec = 1/T = frequency
Answer: -3.49 m/s (to the south)
Explanation:
This problem can be solved by the Conservation of Momentum principle which establishes the initial momentum
must be equal to the final momentum
, and taking into account this is aninelastic collision:
Before the collision:
(1)
After the collision:
(2)
Where:
is the mass of the car
is the velocity of the car, directed to the north
is the mass of the truck
is the velocity of the truck, directed to the south
is the final velocity of both the car and the truck
(3)
(4)
Isolating
:
(5)
(6)
Finally:
The negative sign indicates the direction of the velocity is to the south
A vector is a quantity or phenomenon that has two independent properties: magnitude and direction.
An example of a balanced force is two cards leaning against each other and not falling over, or two football players blocking each other but neither overpowering the other. An example of an unbalanced force is two cards leaning on each other then falling over, or two football players blocking each other, then one tackles the other.
Answer:
Answer in Explanation
Explanation:
Whenever we talk about the gravitational potential energy, it means the energy stored in a body due to its position in the gravitational field. Now, we know that in the gravitational field the work is only done when the body moves vertically. If the body moves horizontally on the same surface in the Earth's Gravitational Field, then the work done on the body is considered to be zero. Hence, the work done or the energy stored in the object while in the gravitational field is only possible if it moves vertically. This vertical distance is referred to as height. <u>This is the main reason why we require height in the P.E formula and calculations.</u>
The derivation of this formula is as follows:
Work = Force * Displacement
For gravitational potential energy:
Work = P.E
Force = Weight = mg
Displacement = Vertical Displacement = Height = h
Therefore,
P.E = mgh