Volume of the tank is 5.5 litres.
Explanation:
mass of the CO2 is given 8.6 grams
Pressure of the gas is 89 Kilopascal which is 0.8762 atm
Temperature of the gas is 29 degrees ( 0 degrees +273.5= K) so (29+273)
R = gas constant 0.0821 liter atmosphere per kelvin)
FROM THE IDEAL GAS LAW
PV=nRT ( P Pressure, V Volume, n is number of moles of gas, R gas constant, Temperature in Kelvin)
no of moles = mass/atomic mass
= 8.6/44
= 0.195 moles
now putting the values in equation
V=nRT/P
= 0.195*0.0821*302/ 0.8762
= 5.5 litres.
As the carbon dioxide gas occupies the volume os the tank hence volume of tank is 5.5 litres.
Answers: -
For high kinetic energy, the object must have high speed of movement.
1) An airplane has a lot of kinetic energy. Airplanes move at high speed and thus posses a lot of kinetic energy.
2) A bullet from a gun has a lot of kinetic energy due to the high speed of bullet.
3) A formula one car moving at high speeds have a lot of kinetic energy.
4) A train moving at high speed has lots of kinetic energy.
5) An asteroid has a lot of kinetic energy due to it's high speed.
6) A roller coaster moving at high speeds have a lot of kinetic energy.
7) A missile fired from a fighter plane has lots of kinetic energy.
Answer:
May be the instrument is incorrect or may be error in it.
Explanation:
The copper have not been detected by this test because the test may be not for the detection of copper, may be it is used for identification of another minerals. If there is copper in the lake sample but can't be detected in the test so it means that the instrument which is used for detection is not the right one or having error in that instrument. Every mineral has a specific type of instrument that detect its presence, if we use incorrect instrument for the mineral then we can't detect the presence of that specific mineral.
The temperature of something.
Answer:
ΔH°rxn = - 433.1 KJ/mol
Explanation:
- CH4(g) + 4Cl2(g) → CCl4(g) + 4HCl(g)
⇒ ΔH°rxn = 4ΔH°HCl(g) + ΔH°CCl4(g) - 4ΔH°Cl2(g) - ΔH°CH4(g)
∴ ΔH°Cl2(g) = 0 KJ/mol.....pure element in its reference state
∴ ΔH°CCl4(g) = - 138.7 KJ/mol
∴ ΔH°HCl(g) = - 92.3 KJ/mol
∴ ΔH°CH4(g) = - 74.8 KJ/mol
⇒ ΔH°rxn = 4(- 92.3 KJ/mol) + (- 138.7 KJ/mol) - 4(0 KJ/mol) - (- 74.8 KJ/mol)
⇒ ΔH°rxn = - 369.2 KJ/mol - 138.7 KJ/mol - 0 KJ/mol + 74.8 KJ/mol
⇒ ΔH°rxn = - 433.1 KJ/mol