Hello.
The answer is <span>exothermic reaction.
Have a nice day</span>
A molecular orbital that decreases the electron density between two nuclei is said to be <u>antibonding.</u>
The bonding orbital, which would be more stable and encourages the bonding of the two H atoms into
, is the orbital that is located in a less energetic state than just the electron shells of the separate atoms. The antibonding orbital, which has higher energy but is less stable, resists bonding when it is occupied.
An asterisk (sigma*) is placed next to the corresponding kind of molecular orbital to indicate an antibonding orbital. The antibonding orbital known as * would be connected to sigma orbitals, as well as antibonding pi orbitals are known as
* orbitals.
Therefore, molecular orbital that decreases the electron density between two nuclei is said to be <u>antibonding.</u>
<u></u>
Hence, the correct answer will be option (b)
<u />
To know more about molecular orbital
brainly.com/question/13265432
#SPJ4
<u />
<u />
Answer:
Over time the metal will cool and the water will heat up. Eventually the two objects will have the same temperature
Explanation:
Answer:
The answer that completes the question are in BOLD:
At chemical equilibrium, the amount of PRODUCT AND REACTANT REMAIN CONSTANT because the RATES OF THE FORWARD AND REVERSE REACTIONS ARE EQUAL.
Explanation:
In a reversible chemical reaction, an equilibrium is said to be achieved when the rates of the forward reaction is equal to that of the reverse reaction. A reversible reaction is one in which products are formed from reactants simultaneously with the formation of reactants from products.
The combination of two or more substances called REACTANTS gives rise to another substance called PRODUCT, which can in turn give rise to Reactants again. With time, the rate at which the reactants give rise the products, which is called the FORWARD REACTION will be equal to the rate at which the products give rise to the reactants, which is called REVERSE REACTION. At this point, the chemical reaction is said to be in a STATE OF EQUILIBRIUM.
When the rate at which both reaction occurs becomes equal i.e. at an equilibrium state, the concentration of both the reactants and the products becomes constant i.e. no longer changes. Hence, the amount of the reactants forming the products is the same as the amount of products forming the reactants.
N.B: At chemical equilibrium, the amount of the reactants and products does not necessarily equals zero (0). It simply means that there is no net change in the concentration/amount of both reactants and products.
<h2>Answer:</h2>
He is right that the energy of vaporization of 47 g of water s 106222 j.
<h3>Explanation:</h3>
Enthalpy of vaporization or heat of vaporization is the amount of energy which is used to transform one mole of liquid into gas.
In case of water it is 40.65 KJ/mol. And 18 g of water is equal to one mole.
It means for vaporizing 18 g, 40.65 kJ energy is needed.
So for energy 47 g of water = 47/18 * 40.65 = 106.1 KJ
Hence the student is right about the energy of vaporization of 47 g of water.