Answer:
15.06 × 10²³ atoms of Li
Explanation:
Given data:
Number of moles of Li = 2.5 mol
Number of toms of Li = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
For 2.5 mol of Li:
1 mole of lithium = 6.022 × 10²³ atoms of Li
2.5 mol × 6.022 × 10²³ atoms of Li / 1 mol
15.06 × 10²³ atoms of Li
The balanced net equation for
BaCl2 (aq) + H2SO4(aq) → BaSO4(s) + HCl (aq) is
Ba^2+(aq) +SO4^2- → BaSO4 (s)
<u><em>Explanation</em></u>
Ionic equation is a chemical equation in which electrolytes in aqueous solution are written as dissociated ions.
<u>ionic equation is written using the below steps</u>
Step 1: <em>write a balanced molecular equation</em>
BaCl2 (aq) +H2SO4 (aq)→ BaSO4(s) +2HCl (aq)
Step 2: <em>Break all soluble electrolytes in to ions</em>
= Ba^2+ (aq) + 2Cl^-(aq) + 2H^+(aq) + SO4^2-(aq)→ BaSO4(s) + 2H^+(aq) +2Cl^- (aq)
step 3: <em>cancel the spectator ions in both side of equation ( ions which do not take place in the reaction)</em>
<em> </em><em> =</em> 2Cl^- and 2H^+ ions
Step 4: <em>write the final net equation</em>
<em> Ba^2+(aq) + SO4^2-(aq)→ BaSO4(s</em><em>)</em>
The answer would be C) Observe and ask questions because if we do process of elimination we see that drawing conclusions is NOT the first step, forming a hypothesis and illustrating the process is part of the method, but NOT the first step.
The answer is D. Use the equation PV=nRT
P=(.567mol)(.0821)(300K)/4.5L
Scientific laws and theories have different jobs to do. A scientific law predicts the results of certain initial conditions. ... In contrast, a theory tries to provide the most logical explanation about why things happen as they do.