solution:
We know v0 = 0, a = 9.8, t = 4.0. We need to solve for v
so,
we use the equation:
v = v0 + at
v = 0 + 9.8*4.0
v = 39.2 m/s
Now we just need to solve for d, so we use the equation:
d = v0t + 1/2*a*t^2
d = 0*4.0 + 1/2*9.8*4.0^2
d = 78.4 m
Part (a): Velocity of the snowball
By conservation of momentu;
m1v1 + m2v2 = m3v3,
Where, m1 = mass of snowball, v1, velocity of snowball, m2 = mass of the hat, v2 = velocity of the hat, m3 = mass of snowball and the hat, v3 = velocity of snowball and the hut.
v2 = 0, and therefore,
85*v1 + 0 = 220*8 => v1 = 220*8/85 = 20.71 m/s
Part (b): Horizontal range
x = v3*t
But,
y = vy -1/2gt^2, but y = -1.5 m (moving down), vy =0 (no vertical velocity), g = 9.81 m/s^2
Substituting;
-1.5 = 0 - 1/2*9.81*t^2
1.5 = 4.905*t^2
t = Sqrt (1.5/4.905) = 0.553 seconds
Then,
x = 8*0.553 = 4.424 m
Explanation:
If a positive test charge is placed in an electric field, it will exert the force in the test charge in the direction of electric field vector. We know that the direction of electric field is given by electric field lines. The field lines for a positive charge is outwards. The electric force acting on the charge is given by :
F = q E
Hence, this is the required solution.
I don't know what you mean when you say he "jobs" the other ball, and the answer to this question really depends on that word.
I'm going to say that the second player is holding the second ball, and he just opens his fingers and lets the ball <u><em>drop</em></u>, at the same time and from the same height as the first ball.
Now I'll go ahead and answer the question that I've just invented:
Strange as it may seem, <em>both</em> balls hit the ground at the <em>same time</em> ... the one that's thrown AND the one that's dropped. The horizontal speed of the thrown ball has no effect on its vertical acceleration, so both balls experience the same vertical behavior.
And here's another example of the exact same thing:
Say you shoot a bullet straight out of a horizontal rifle barrel, AND somebody else <em>drops</em> another bullet at exactly the same time, from a point right next to the end of the rifle barrel. I know this is hard to believe, but both of those bullets hit the ground at the same time too, just like the baseballs ... the bullet that's shot out of the rifle and the one that's dropped from the end of the barrel.