Answer:
15.75 m
Explanation:
First, let's look at the top brick by itself. In order for it not to tip over the bottom brick, its center of gravity must be right at the edge of the bottom brick. So the edge of the top brick must be 10.5 m from the edge of the bottom brick.
Now let's look at both bricks as a combined mass. We know the total length of this combined brick is 10.5 m + 21 m = 31.5 m. And we know that for it to not tip over the edge of the surface, its center of gravity must be at the edge. So the edge of the combined brick must be 31.5 m / 2 = 15.75 m from the edge of the surface.
Answer:
Explanation:
The inclined plane
An inclined plane consists of a sloping surface; it is used for raising heavy bodies. The plane offers a mechanical advantage in that the force required to move an object up the incline is less than the weight being raised (discounting friction). The steeper the slope, or incline, the more nearly the required force approaches the actual weight. Expressed mathematically, the force F required to move a block D up an inclined plane without friction is equal to its weight W times the sine of the angle the inclined plane makes with the horizontal (θ). The equation is F = W sin θ.
The lever
A lever is a bar or board that rests on a support called a fulcrum. A downward force exerted on one end of the lever can be transferred and increased in an upward direction at the other end, allowing a small force to lift a heavy weight.
The wedge
A wedge is an object that tapers to a thin edge. Pushing the wedge in one direction creates a force in a sideways direction. It is usually made of metal or wood and is used for splitting, lifting, or tightening, as in securing a hammer head onto its handle.
The wheel and axle
A wheel and axle is made up of a circular frame (the wheel) that revolves on a shaft or rod (the axle). In its earliest form it was probably used for raising weights or water buckets from wells.
Its principle of operation is best explained by way of a device with a large gear and a small gear attached to the same shaft. The tendency of a force, F, applied at the radius R on the large gear to turn the shaft is sufficient to overcome the larger force W at the radius r on the small gear. The force amplification, or mechanical advantage, is equal to the ratio of the two forces (W:F) and also equal to the ratio of the radii of the two gears (R:r)
Answer:
5080.86m
Explanation:
We will divide the problem in parts 1 and 2, and write the equation of accelerated motion with those numbers, taking the upwards direction as positive. For the first part, we have:


We must consider that it's launched from the ground (
) and from rest (
), with an upwards acceleration
that lasts a time t=9.7s.
We calculate then the height achieved in part 1:

And the velocity achieved in part 1:

We do the same for part 2, but now we must consider that the initial height is the one achieved in part 1 (
) and its initial velocity is the one achieved in part 1 (
), now in free fall, which means with a downwards acceleration
. For the data we have it's faster to use the formula
, where d will be the displacement, or difference between maximum height and starting height of part 2, and the final velocity at maximum height we know must be 0m/s, so we have:

Then, to get
, we do:



And we substitute the values:

Answer:
The value is 
Explanation:
From the question we are told that
The molar mass of hydrazine is 
The initial temperature is 
The final temperature is 
The specific heat capacity is ![c_h = 0.099 [kJ/(mol K)] = 0.099 *10^3 J/(mol/K)](https://tex.z-dn.net/?f=c_h%20%20%3D%20%200.099%20%5BkJ%2F%28mol%20K%29%5D%20%3D%200.099%20%2A10%5E3%20J%2F%28mol%2FK%29)
The power available is 
The mass of the fuel is 
Generally the number of moles of hydrazine present is

=> 
=> 
Generally the quantity of heat energy needed is mathematically represented as
=>
=>
Generally the time taken is mathematically represented as

=> 
=> t = 2480505.6377 s
Converting to hours

=> 
Answer:
The given statement is false.
Explanation:
The spherical mirrors are the mirror that are a part of a sphere. Concave and convex mirrors are two types of spherical mirrors.
A concave mirror always forms real and inverted image. A convex mirror forms real and virtual images.
For concave mirror, the value of magnification is less that 1. Also, the focal length is negative for concave mirrors.
So, the given statement is false as a concave mirror always forms a real and inverted image. Hence, this is the required solution.