A car has a mass of 900 kg and a truck has a mass of 1800 kg. In which of the following situations would they have the same momentum?A car has a mass of 900 kg and a truck has a mass of 1800 kg. In which of the following situations would they have the same momentum?
Answer:
A. The bomb will take <em>17.5 seconds </em>to hit the ground
B. The bomb will land <em>12040 meters </em>on the ground ahead from where they released it
Explanation:
Maverick and Goose are flying at an initial height of
, and their speed is v=688 m/s
When they release the bomb, it will initially have the same height and speed as the plane. Then it will describe a free fall horizontal movement
The equation for the height y with respect to ground in a horizontal movement (no friction) is
[1]
With g equal to the acceleration of gravity of our planet and t the time measured with respect to the moment the bomb was released
The height will be zero when the bomb lands on ground, so if we set y=0 we can find the flight time
The range (horizontal displacement) of the bomb x is
[2]
Since the bomb won't have any friction, its horizontal component of the speed won't change. We need to find t from the equation [1] and replace it in equation [2]:
Setting y=0 and isolating t we get

Since we have 


Replacing in [2]


A. The bomb will take 17.5 seconds to hit the ground
B. The bomb will land 12040 meters on the ground ahead from where they released it
Stop and look to see if anything is coming
Explanation:
If two particles are involved in an elastic collision, the velocity of the second particle after collision can be expressed as: v2f=2⋅m1(m2+m1)v1i+(m2−m1)(m2+m1)v2i v 2 f = 2 ⋅ m 1 ( m 2 + m 1 ) v 1 i + ( m 2 − m 1 ) ( m 2 + m 1 ) v 2 i .