Answer:
The answer is 10.857mJ
Explanation:
The energy stored in this solenoid is given by the below mentioned equation,

where L the inductance of this solenoid is given by the below mentioned equation,

Plugging this into the energy equation you obtain the equation for the total energy stored in the magnetic field of the solenoid, given by,

where
is the permeability of free space which equals to
. Plugging all the quantities into the above equation from the data in the question after converting to standard units. of meters instead of centimeters, we get for the energy stored in the coil,

Answer:
Let I and j be the unit vector along x and y axis respectively.
Electric field at origin is given by
E= kq1/r1^2 i + kq2/r2^2j
= 9*10^9*1.6*10^-19*/10^-6*(2i+ j)
= (2.88i + 1.44j)*10^-3 N/C
Force on charge= qE= 3*10^-19*1.6*(2.88i +1. 44 j) *10^-3
F= (1.382 i + 0.691 j) *10^-21
Goodluck
Explanation:
Im sure the answer is letter B
True lizards can stick to surfaces because their bulbous toes are covered in hundreds of tiny microscopic hairs called setae
The work done occurs only in the direction the block was moved - horizontally. Work is given by:
W = F(h) * d
Where F(h) is the force applied in that direction (horizontal) and d is the distance in that direction. In this case, F(h) is the horizontal component of the applied force, F(app). However, the question doesn't give us F(app), so we need to find it some other way.
Since the block is moving at a constant speed, we know the horizontal forces must be balanced so that the net force is 0. This means that F(h) must be exactly balanced by the friction force, f. We can express F(h) as a function of F(app):
F(h) = F(app)cos(23)
Friction is a little trickier - since the block is being PUSHED into the ground a bit by the vertical component of the applied force, F(v), the normal force, N, is actually a bit more than mg:
N = mg + F(v) = mg + F(app)sin(23)
Now we can get down to business and solve for F(app) - as mentioned above:
F(h) = f
F(h) = uN
F(h) = u * (mg + F(v))
F(app)cos(23) = 0.20 * (33 * 9.8 + F(app)sin(23))
F(app) = 76.8
Now that we have F(app), we can find the exact value of F(h):
F(h) = F(app)cos(23)
F(h) = 76.8cos(23)
F(h) = 70.7
And now that we have F(h), we can find W:
W = F(h) * d
W = 70.7 * 6.1
W = 431.3
Therefore, the work done by the worker's force is 431.3 J. This also represents the increase in thermal energy of the block-floor system.