Answer:
The answer is "
"
Explanation:
For point a:
Energy balance equation:


From the above equation:

because the rate of air entering the tank that is
constant.
Since the tank was initially empty and the inlet is constant hence,
Interpolate the enthalpy between
. The surrounding air
temperature:

Substituting the value from ideal gas:

Follow the ideal gas table.
The
and between temperature
Interpolate

Substitute values from the table.
For point b:
Consider the ideal gas equation. therefore, p is pressure, V is the volume, m is mass of gas.
(M is the molar mass of the gas that is
and R is gas constant), and T is the temperature.


For point c:
Entropy is given by the following formula:

D. all of the above
Hope this helps!
If you're using the bulb as a source of light, then it's. 14/60 = 23.3% efficient.
If you're using it to heat a bird nest or a hamster cage, then it's. 46/60 = 76.7% efficient !
It just depends on your point of view, and what you consider 'useful' output.
Kinetic of automobile
Mass m = 1,250 Kg; V = 11 m/s
Formula: K.E = 1/2 mV²
K.E = 1/2(1,250 Kg)(11 m/s)²
K.E = 75,625 J
Speed required for insect to have the same kinetic energy as automobile
Mass of insect = 0.72 g convert to Kg m = 7.2 x 10⁻⁴ Kg
K.E = 1/2 mV² Derive V =?
V = 2 K.E/m
V = √2(75,625 J)/7.2 x 10⁻4 Kg
V = √2.1 x 10⁸ m²/s²
V = 14,491.34 m/s (velocity of insect)