1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrei [34K]
3 years ago
14

Block B is attached to a massless string of length L = 1 m and is free to rotate as a pendulum. The speed of block A after the c

ollision is half its speed before the collision. Block B was at rest before the collision. The mass of block A is 7 kg and the mass of block B is 2 kg. What is the minimum initial speed (in m/s) that block A must have for block B to swing through a complete vertical circle?

Physics
1 answer:
Amanda [17]3 years ago
6 0

Complete Question

The diagram for this question is shown on the first uploaded image

Answer:

The minimum velocity of A is  v_A= 4m/s

Explanation:

From the question we are told that

    The length of the string is  L = 1m

     The initial speed of block A is u_A

     The final speed of block A is  v_A = \frac{1}{2}u_A

      The initial speed of block B is u_B = 0

      The mass of block A  is  m_A = 7kg  gh

      The mass of block B is  m_B  = 2 kg

According to the principle of conservation of momentum

       m_A u_A + m_B u_B = m_Bv_B + m_A \frac{u_A}{2}

Since block B at initial is at rest

       m_A u_A  = m_Bv_B + m_A \frac{u_A}{2}

      m_A u_A  - m_A \frac{u_A}{2} = m_Bv_B

          m_A \frac{u_A}{2} = m_Bv_B

  making v_B the subject of the formula

             v_B =m_A \frac{u_A}{2 m_B}

Substituting values

               v_B =\frac{7 u_A}{4}  

This v__B is the velocity at bottom of the vertical circle just at the collision with mass A

Assuming that block B is swing through the vertical circle(shown on the second uploaded image ) with an angular velocity  of v__B' at  the top of the vertical circle  

 The angular centripetal acceleration  would be mathematically represented

                   a= \frac{v^2_{B}'}{L}

Note that  this acceleration would be toward the center of the circle

      Now the forces acting at the top of the circle can be represented mathematically as

         T + mg = m \frac{v^2_{B}'}{L}

    Where T is the tension on the string

  According to the law of energy conservation

The energy at  bottom of the vertical circle   =  The energy at the top of

                                                                                the vertical circle

   This can be mathematically represented as

                 \frac{1}{2} m(v_B)^2 = \frac{1}{2} mv^2_B' + mg 2L

From above  

                (T + mg) L = m v^2_{B}'

Substitute this into above equation

             \frac{1}{2} m(\frac{7 v_A}{4} )^2 = \frac{1}{2} (T + mg) L  + mg 2L  

             \frac{49 mv_A^2}{16}  = \frac{1}{2} (T + mg) L + mg 2L

          \frac{49 mv_A^2}{16}  = T + 5mgL

The  value of velocity of block A needed to cause B be to swing through a complete vertical circle is would be minimum when tension on the string due to the weight of B is  zero

        This is mathematically represented as

                      \frac{49 mv_A^2}{16}  = 5mgL

making  v_A the subject

            v_A = \sqrt{\frac{80mgL}{49m} }

substituting values

          v_A = \sqrt{\frac{80* 9.8 *1}{49} }

              v_A= 4m/s

     

You might be interested in
The purpose of this lab is to explore the various ways to calculate projectile velocity using horizontal, vertical and angle inf
kolezko [41]

Answer: A projectile is any object in which the only force is gravity

Explanation: Equations on how to calculate projectile velocity is stated below:

The initial velocity Vo being a vector quantity, has two componentsVox and Voy  

V0x = V0 cos(θ) 

V0y = V0 sin(θ) 

The acceleration A is a also a vector with two components Axand Ay given

Ax = 0 and Ay = - g = - 9.8 m/s2 

Along the x axis the acceleration is equal to 0 and therefore the velocity Vx is constant  

Vx = Vocos(θ) 

Along the y axis, the acceleration is uniform and equal to - g and the velocity at time t is g

Vy = Vo sin(θ) - g t 

Along the x axis the velocity Vx is constant and therefore the component x of the displacement is

x = Vocos(θ) t 

Along the y axis, the motion is of uniform acceleration and the y component of the displacement is

y = Vo sin(θ) t - (1/2) g t2 

3 0
3 years ago
Wha is amplitde in sound
NemiM [27]

Answer:

The number of molecules displaced in a vibration makes the amplitude of a sound.

7 0
3 years ago
The table and graph below show the distances traveled by two different objects. (3 points)
Aleks04 [339]

Answer:c

Explanation: the speed of object a changes but b travels at constant speed

5 0
2 years ago
Communicating results allows scientists to learn from each other's results.
sveta [45]

True, scientists often talk to each other to figure out if their results were similar and what they could have done better.

Although, talking to other scientists does have risks, other scientists could copy your work and further better it.

So, your final answer is TRUE, sorry for the long answer, I needed to have a word count about 20 characters and then I got carried away! lol

3 0
3 years ago
Read 2 more answers
The floor of a railroad flatcar is loaded with loose crates having a coefficient of static friction of 0.32 with the floor. If t
coldgirl [10]

Answer:

The shortest braking distance is 35.8 m

Explanation:

To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down

On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis

    Y axis

     N- W = 0

     N = W = mg

  X axis

     -Fr = m a

     -μ N = m a

     -μ mg = ma

     a = μ g

     a  = - 0.32 9.8

     a =  - 3.14 m/s²

We calculate the distance using the kinematics equations

    Vf² = Vo² + 2 a x

     x = (Vf² - Vo²) / 2 a

When the train stops the speed is zero (Vf = 0)

 Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s

     x = ( 0 - 15²) / 2 (-3.14)

     x=  35.8 m

The shortest braking distance is  35.8 m

7 0
2 years ago
Other questions:
  • The diagram shows a ball resting at the top of a hill.
    8·2 answers
  • Miguel is learning to play the piano. He has learned to play some chord sequences with ease. In this scenario, the chord sequenc
    15·2 answers
  • Mars has a mass of about 6.58 × 1023 kg, and its moon Phobos has a mass of about 9.3 × 1015 kg. If the magnitude of the gravitat
    12·1 answer
  • How does a mathematical model help you understand the science concepts
    9·1 answer
  • Ancient species found in just one region, whose close relatives have all gone extinct, are designated __________.
    12·1 answer
  • If We Start With 48 Atoms Of A Radioactive Substance, How Many Would Remain After One Half-life?
    15·1 answer
  • A 10kg rock is pushed off the edge of a bridge 50 meters above the ground . What was the kinetic energy of the rock before it be
    10·1 answer
  • Decribir los tejidos que forman en triceps, gluteo, deltroides. ​
    13·1 answer
  • What is the length of AC?
    10·1 answer
  • What is the gravitational force that two objects would feel if they are 3.5 meters apart? Object 1 has a mass of 10x10^5 kg and
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!