Answer:
r₂ = 0.316 m
Explanation:
The sound level is expressed in decibels, therefore let's find the intensity for the new location
β = 10 log
let's write this expression for our case
β₁ = 10 log \frac{I_1}{I_o}
β₂ = 10 log \frac{I_2}{I_o}
β₂ -β₁ = 10 (
)
β₂ - β₁ = 10
log \frac{I_2}{I_1} =
= 3
= 10³
I₂ = 10³ I₁
having the relationship between the intensities, we can use the definition of intensity which is the power per unit area
I = P / A
P = I A
the area is of a sphere
A = 4π r²
the power of the sound does not change, so we can write it for the two points
P = I₁ A₁ = I₂ A₂
I₁ r₁² = I₂ r₂²
we substitute the ratio of intensities
I₁ r₁² = (10³ I₁ ) r₂²
r₁² = 10³ r₂²
r₂ = r₁ / √10³
we calculate
r₂ =
r₂ = 0.316 m
The work done by tension force of 14N applied on the laptop by a rope as it moves 2.0 mm up the slope is 0.028 J
W = F d cos θ
W = Work done
F = Force
d = Displacement
θ = Angle between force and displacement vector
F = 14 N
d = 2 mm = 0.002 m
θ = 0
W = 14 * 0.002 * 1
W = 0.028 J
Work done is the change in energy of an object. So if an object moves a certain distance, work is done on the object. If the force and displacement are perpendicular to each other there is no work done on the object.
Therefore, the work done by tension on the laptop is 0.028 J
To know more about work done
brainly.com/question/12834956
#SPJ4
Answer:
Radio waves
Explanation:
The electromagnetic spectrum includes all different types of waves, which are usually classified depending on their frequency. Ordering them from the highest frequency to the lowest frequency, they are:
- Gamma rays
- X-rays
- Ultraviolet
- Visible light
- Infrared radiation
- Microwaves
- Radio waves
Radio waves are the electromagnetic waves with lowest frequency, their frequency is lower than 300 GHz (
) and therefore they are the electromagnetic waves with lowest energy (in fact, the energy of an electromagnetic wave is proportional to its frequency). They are generally used for radio and telecommunications since this type of waves can travel up to long distances.
Answer:
The maximum electric field strength = 0.01 V/m
Explanation:
Given
ΔV(max) = 4.00 mV = 0.004 V
d = 0.400 m
f = 1.00 Hz
Maximum electric field = (maximum potential)/(length)
Maximum electric field = E(max)
Maximum potential = 4.00 mV = 0.004 V
Length = 0.400 m
E(max) = (0.004/0.4) = 0.01 V/m
Hope this Helps!!!