Yes it is available. It will continue catalyzing the reactions until it becomes completely consumed. That's how enzymes work. They work and are eventually consumed in the process completely without altering the reaction in any way other than speeding it up.
<span />
Answer: The gas phase is unique among the three states of matter in that there are some simple models we can use to predict the physical behavior of all gases—independent of their identities. We cannot do this for the solid and liquid states. ... Gas particles do not experience any force of attraction or repulsion with each other.
Explanation:
0.003 moles of NaOH was used in the titration.
<h3>What is titration?</h3>
The concentration of an identified analyte can be found using a simple laboratory technique called titration. As a standard solution with a given concentration and volume, a reagent known as the titrant or titrator is created.
By using a solution with a known concentration to measure the concentration of an unknown solution, this process is known as titration. To a known volume of the analyte (the unknown solution), the titrant (the known solution) is typically added from a buret until the reaction is finished. To ascertain the unknown concentration of an identifiable analyte, titration, commonly referred to as titrimetry, is a widely used quantitative laboratory analytical technique (Medwick and Kirschner, 2010). Volume measurements are a crucial component of titration
Concentration in mol/dm3 =
Amount of solution mol
= concentration in mol/dm3 × volume in dm3
Amount of sodium hydroxide
= 0.100 × 0.0250
= 0.00250 mol
To know more about titration, visit:
brainly.com/question/27394328
#SPJ9
Answer:
No
Explanation:
The mass fraction is defined as:

where:
- wi: mass fraction of the substance i
- mi: mass of the substance i
- mt: total mass of the system
<u><em>The mass fraction of two substances (A and B), will be the same, ONLY if the mass of the substance A (mA) is the same as the mass of the substance B (mB).</em></u>
An equimolar mixutre of O2 and N2 has the same amount of moles of oxygen and nitrogen, just to give an example let's say that the system has 1 mole of O2 and 1 mole of N2. Then using the molecuar weigth of each of them we can calculate the mass:
mA= 1 mole of O2 * 16 g/1mol = 16 g
mB=1 mole of N2 *28 g/1mol=28 g
As mA≠mB then the mass fractions are not equal, so the answear is NO.