1.4715 atm is the pressure of the sample 1.33 moles of fluorine gas that is contained in a 23.3 L container at 314 K.
What is an ideal equation?
The ideal gas equation, pV = nRT, is an equation used to calculate either the pressure, volume, temperature or number of moles of a gas. The terms are: p = pressure, in pascals (Pa).
Given data:
Volume (V) = 23.3 L
Number of mole (n) = 1.33 moles
Temperature (T) = 314 K
Gas constant (R) = 0.821 atm.L/Kmol
Pressure (P) =?
The pressure inside the container can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
P × 23.3 L = 1.33 moles × 0.0821 ×314 K
P = 1.4715 atm
Therefore, the pressure of the sample is 1.4715 atm.
Learn more about the ideal gas equation:
brainly.com/question/23826793
SPJ1
3 NaOH + FeBr3 = 3 NaBr + Fe(OH)3
Hope this helps!!
When heat energy is supplied to a material it can raise the temperature of mass of the material.
Specific heat is the amount of energy required by 1 g of material to raise the temperature by 1 °C.
equation is
H = mcΔt
H - heat energy
m - mass of material
c - specific heat of the material
Δt - change in temperature
substituting the values in the equation
120 J = 10 g x c x 5 °C
c = 2.4 Jg⁻¹°C⁻¹
You take the moles divided by the liters to get the molarity.