Answer:
I dont know sorry i will try my best htough
Explanation:
Glucose is the starting molecule for glycolysis.
<u>Answer:</u> The pH of the buffer is 4.61
<u>Explanation:</u>
To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
![pH=pK_a+\log(\frac{[\text{conjuagate base}]}{[\text{acid}]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5B%5Ctext%7Bconjuagate%20base%7D%5D%7D%7B%5B%5Ctext%7Bacid%7D%5D%7D%29)
We are given:
= negative logarithm of acid dissociation constant of weak acid = 4.70
= moles of conjugate base = 3.25 moles
= Moles of acid = 4.00 moles
pH = ?
Putting values in above equation, we get:

Hence, the pH of the buffer is 4.61
<u>Answer:</u> The number of moles of weak acid is
moles.
<u>Explanation:</u>
To calculate the moles of KOH, we use the equation:

We are given:
Volume of solution = 43.81 mL = 0.04381 L (Conversion factor: 1L = 1000 mL)
Molarity of the solution = 0.0969 moles/ L
Putting values in above equation, we get:

The chemical reaction of weak monoprotic acid and KOH follows the equation:

By Stoichiometry of the reaction:
1 mole of KOH reacts with 1 mole of weak monoprotic acid.
So,
of KOH will react with =
of weak monoprotic acid.
Hence, the number of moles of weak acid is
moles.