Any substance that accept a proton by definition is considered to be BRONSTED LOWRY BASE.
Bronsted Lowry defined acid and base on the basis of donating or accepting protons. In the Bronsted Lowry classification of acid and base, an acid is defined as a substance which donate proton while a base is defined as a substance which accept proton.
Answer:
B) CH3CH2CH2F
Explanation:
All the other compounds listed among the options are capable of forming hydrogen bonds with water except CH3CH2CH2F.
Recall that hydrogen bonds are formed when hydrogen is directly bonded to a highly electronegative atom such as nitrogen, oxygen, fluorine, sulphur, et cetra.
Such bonds are not present in CH3CH2CH2F, rather fluorine is bonded to carbon to give a halogenoalkane. This compound will display the least solubility in water.
First you find the RFM (Relative Formula Mass) of Fe2O3
Fe2 = 56 x 2
= 112
O3 = 16 x 3
= 48
112 + 48 = 160
Moles = mass/RFM
= 79.2/160
=0.495
Then you rearrange the formula
Mass= moles x RFM
= 0.495 x 112
= 55.44 g
(To find mass of Iron have to use RFM of total iron in the substance example Fe2 ^^)
Answer is: <span>the molarity of the sulfuric acid is 7.14 M.
</span>ω(H₂SO₄) = 50% ÷ 100% = 0.5.<span>
d(H</span>₂SO₄) = 1.4 g/mL.
V(H₂SO₄) = 100 mL ÷ 1000 mL/L = 0.1 L..
mr(H₂SO₄) = d(H₂SO₄) · V(H₂SO₄).
mr(H₂SO₄) = 1.4 g/mL · 100 mL.
mr(H₂SO₄) = 140 g.
m(H₂SO₄) = ω(H₂SO₄) · mr(H₂SO₄).
m(H₂SO₄) = 0.5 · 140 g.
m(H₂SO₄) = 70 g.
n(H₂SO₄) = m(H₂SO₄) ÷ M(H₂SO₄).
n(H₂SO₄) = 70 g ÷ 98 g/mol.
n(H₂SO₄) = 0.714 mol.
c(H₂SO₄) = n(H₂SO₄) ÷ V(H₂SO₄).
c(H₂SO₄) = 0.714 mol ÷ 0.1 L.
C(H₂SO₄) = 7.14 M.