Answer:
c = 0.898 J/g.°C
Explanation:
1) Given data:
Mass of water = 23.0 g
Initial temperature = 25.4°C
Final temperature = 42.8° C
Heat absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Specific heat capacity of water is 4.18 J/g°C
ΔT = 42.8°C - 25.4°C
ΔT = 17.4°C
Q = 23.0 g × × 4.18 J/g°C × 17.4°C
Q = 1672.84 j
2) Given data:
Mass of metal = 120.7 g
Initial temperature = 90.5°C
Final temperature = 25.7 ° C
Heat released = 7020 J
Specific heat capacity of metal = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 25.7°C - 90.5°C
ΔT = -64.8°C
7020 J = 120.7 g × c × -64.8°C
7020 J = -7821.36 g.°C × c
c = 7020 J / -7821.36 g.°C
c = 0.898 J/g.°C
Negative sign shows heat is released.
The answer is 23.5° but I guess 23° is closest
Answer:
91.5 mol
Explanation:
Volume of gas = 70 L
Temperature = 25°C
Pressure = 32 atm
Moles of gas = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will convert the temperature.
25+273.15 = 298.15 K
By putting values,
32 atm × 70 L = n ×0.0821 atm.L /mol.K × 298.15 K
2240 atm.L = n ×24.48 atm.L /mol
n = 2240 atm.L / 24.48 atm.L /mol
n = 91.5 mol
Answer:
Answer: II and IV
Explanation: Flammability and the ability to rust are chemical properties because they change an object. I, III, and V are physical properties because it doesn't change the object's composition. This includes weight, the change in matter (solid to liquid), or change in volume.
Hope this helps!!!
Explanation:
Answer is: <span>volume of oxygen is 14.7 liters.
</span>Balanced chemical
reaction: C₃H₈ + 5O₂ → 3CO₂ + 4H₂O.<span>
m(</span>C₃H₈-propane) = 5.53 g.
n(C₃H₈) = m(C₃H₈) ÷ M(C₃H₈).
n(C₃H₈) = 5.53 g ÷ 44.1 g/mol.
n(C₃H₈) = 0.125 mol.
From chemical reaction: n(C₃H₈) : n(O₂) = 1 : 5.
n(O₂) = 0.625 mol.
T = 25° = 298.15K.
p = 1.04 atm.
<span>R = 0.08206
L·atm/mol·K.
</span>Ideal gas law: p·V = n·R·T.
V(O₂) = n·R·T / p.
V(O₂) = 0.625 mol · 0.08206 L·atm/mol·K · 298.15 K / 1.04 atm.
V(O₂) = 14.7 L.