To determine the moles in 40 grams of magnesium, we need the atomic weight. This can easily be found on a periodic table. For this problem, let's use 24.305 grams/mole.
We are going to set up an equation to determine this problem. In this equation, we want all our units to cancel out except for 'moles.'

In this, we can see that the unit 'grams' will cancel out to leave us with moles.
In solving the equation, we determine that there are approximately 1.65 moles of Magnesium.
Answer:
Solid phosphorus reacts with gaseous oxygen to produce solid diphosphorus pentaoxide. ... Methanol burns in oxygen to produce carbon dioxide gas and water vapor.
Explanation:
Solid phosphorus reacts with gaseous oxygen to produce solid diphosphorus pentaoxide. ... Methanol burns in oxygen to produce carbon dioxide gas and water vapor.
Answer: (e) The pressure in the container increases but does not double.
Explanation:
To solve this, we need to first remember our gas law, Boyle's law states that the pressure and volume of a gas have an inverse relationship. That is, If volume increases, then pressure decreases and vice versa, when temperature is held constant. Therefore, increasing the volume in this case does not double the pressure owning to out gas law, but an increase in pressure would be noticed if temperature is constant
From the periodic table:
molecular mass of carbon = 12 grams
molecular mass of fluorine = 18.99 grams
molecular mass of chlorine = 35.5 grams
Therefore:
one mole of CF2Cl2 = 12 + 2(18.99) + 2(35.5) = 120.98 grams
Therefore, we can use cross multiplication to find the number of moles in 79.34 grams as follows:
mass = (79.34 x 1) / 120.98 = 0.6558 moles
Now, one mole contains 6.022 x 10^23 molecules, therefore:
number of molecules in 0.65548 moles = 0.6558 x 6.022 x 10^23
= 3.949 x 10^23 molecules
The Nassau Din beat the the star has.
It may turn into a black hole if it has a high enough mass.