Answer:
The International Astronomical Union (IAU) has accepted 88 constellations in the sky.
Explanation:
Constellations has been used since the beginnings of civilizations and each one of them named them as they considered appropiate. It means Greeks' constellations were different than the ones described by Chinese, so it was necessary to gather all these constellations and make a great record with all of them, but there was a problem: Some constellations from different civilizations overlaped because they shared the same stars. There was necessary to put some order on this and that is when in 1922 the International Astronomical Union (IAU) defned a set of 88 moderm constellations that would become the international standard to look at the night sky. Each one of them is unique and does not share stars with the other constellations.
<span>The distance between wave crests is called wavelength. It is a characteristic shared by waves of all kinds, including ocean waves and sound waves. Wavelength is measured from the highest point, or summit, of one wave's crest to the summit of the next wave's <span>crest</span></span>
<span><span>hope this helps</span></span>
Answer:
N= 3
Explanation:
For this exercise we must use Faraday's law
E = - dФ / dt
Ф = B . A = B Acos θ
tje bold indicate vectors. As it indicates that the variation of the field is linear, we can approximate the derivatives
E = - A cos θ (B - B₀) / t
The angle enters the magnetic field and the normal to the area is zero
cos 0 = 1
A = π r²
In the length of the wire there are N turns each with a length L₀ = 2π r
L = N (2π r)
r = L / 2π N
we substitute
A = L² / (4π N²)
The magnetic field produced by a solenoid is
B = μ₀ N/L I
for which
B₀ = μ₀ N/L I
The final field is zero, because the current is zero
B = 0
We substitute
E = - (L² / 4π N²) (0 - μ₀ N/L I) / t
E = μ₀ L I / (4π N t)
N = μ₀ L I / (4π t E)
The electromotive force is E = 0.80 mV = 0.8 10⁻³ V
let's calculate
N = 4π 10⁻⁷ 200 1.60 / (4π 0.120 0.8 10⁻³)]
N = 320 10⁻⁷ / 9.6 10⁻⁶
N = 33.3 10⁻¹
N= 3
Shear stress created the San Andreas Fault in Southern California. It is an example of a <span>reverse fault.</span>