Answer:
a) W = 46.8 J and b) v = 3.84 m/s
Explanation:
The energy work theorem states that the work done on the system is equal to the variation of the kinetic energy
W = ΔK =
-K₀
a) work is the scalar product of force by distance
W = F . d
Bold indicates vectors. In this case the dog applies a force in the direction of the displacement, so the angle between the force and the displacement is zero, therefore, the scalar product is reduced to the ordinary product.
W = F d cos θ
W = 39.0 1.20 cos 0
W = 46.8 J
b) zero initial kinetic language because the package is stopped
W -
=
-K₀
W - fr d= ½ m v² - 0
W - μ N d = ½ m v
on the horizontal surface using Newton's second law
N-W = 0
N = W = mg
W - μ mg d = ½ m v
v² = (W -μ mg d) 2/m
v = √(W -μ mg d) 2/m
v = √[(46.8 - 0.30 4.30 9.8 1.20) 2/4.3
]
v = √(31.63 2/4.3)
v = 3.84 m/s
Answer:
b. they get blown in from colder or warmer areas.
Answer:
B) how steep the slope is
Explanation:
Because you have to know how is the influence of the steep of the slope in the time that a ball reaches the bottom. The steep of the slope is the variable that you would have to change in an experiment.
I hope this is useful for you
regards
<h2>
Answer: 13.61 N/m</h2>
Hooke's law establishes that the elongation of a spring is directly proportional to the modulus of the force
applied to it, <u>as long as the spring is not permanently deformed</u>:
(1)
Where:
is the elastic constant of the spring. The higher its value, the more work it will cost to stretch the spring.
is the length of the spring without applying force.
is the length of the spring with the force applied.
According to this, we have a spring where only the force due gravity is applied.
In other words, the force applied is the weigth
of the block:
(2)
Where
is the mass of the block and
is the gravity acceleration.
(3)
(4)
Knowing the force applied
and
and
, we can substitute the values in equation (1) and find
:
(5)
(6)
<u>Finally:</u>